David Johnson-Davies

Sigma Technical Press

PRACTIAL PROGRAMS

for the BBC Computer and ACORN ATOM

David Johnson-Davies

ESigma Technical Press

“opyright (&) 1982, David Johnson-Davies

\11 Rights Reserved

io part of this book may be reproduced by any means
rithout the prior permission of the copyright holder.
'he only exceptions are as provided for by the
opyright (photocopying) Act or for the purposes of
eview or in order for the software herein to be

ntered into a computer for the so0le use of the owner
f this bock.

SBN: O 905104 14 5

ublished by:

igma Technical Presgs, 5 Alton Road, Wilmslow,
heshire, UK.

istributed by:
n Europe and Africa-

ochn Wiley & Sons Ltd, Baffins Lane, Chichester,
issex, England.

1 Australia, New Zealand, South East Asia-

rcaranda-Wiley Ltd, Jacaranda Press, John Wiley &

ons Inc, GPCO Box 859, Brisbane, Queensland 40001,
istralia.

Infroduction

The aim of this bock is to present a collection of
programs that will both be useful in their own right,
and illustrate a range of interesting, and in many
cases classical, programming problems. The topics
cover the entire range of computer applications:; from
mathematics and graphics, to games, and include a
project to develop a compiler for a simple programming
language.

Originally the programs were to be presented for
one computer, with notes on converting them to run on
other machines., However, this scon proved to be
impractical due toc the wide range of BASIC dialects.
Therefore the present format of the book evolved. Each
program 1is presented in two versions; one for the RBC
Computer, whose BASIC seems likely to become a
standard for the next few years, and the other for the
Acorn Atom, its popular predecesscor. Readers with
other machines should have little trouble converting
one of these versions to their particular BASIC.

Finally, I hope that the reader enjoys trying out
the programs in the following pages, and is inspired
to improve on them, or use them as the basis for more
ambitious projects. To this end, many of the programs
include a section of 'Further Suggestions’.

Notes on the Programs

All of the programs in this book will run on the Model
A BBC Ceomputer, with 16K of RAM, although the programs
of Chapter 2 can be modified to take advantage of the
higher-resolution graphics available on the Model B,

The wersions for the Atom will run on a machine
with 1K of graphics memory, with the exception of the
programs of Chapter 2, and the Compiler program, which
require the full 6K o¢f graphics memory. A
floating-peint ROM is needed for Rotation, Surface,
and Fractions.

Acknowledgements

I would like to thank all the people who helped in the
preparation of this book, including Roger Wilson for
several useful comments, Tim Dobson and Jonathan
Griffiths for assisting in converting the programs to
BBC BAS1C, and Dorothy Armstrong for proof-reading the
manuscript,

For help with particular programs I am indebted to
the following: Chris Cant, for the Surface program;
Nick Toop, for the programs on which Anagrams, Buzz
Phrases, and Patterns are based; and David Deutsch,
for sugqgyesting improvements to the Fractions program
and for commenting on an earlier draft of the book .

The book was prepared using word processors on
Acorn computers, and I would like to thank Acorn for
the help provided during this project.

David Johnson-Davies January 1982

Contents

Introduction - 3
Chapter 1 - GAMES 7
Silver-Dollar Game 7

Car Maze 13
card Trick 16
Chapter 2 - GRAPHS 21
Patterns 21
Contours 24
Rotation 25
Surface 29
Chapter 3 -~ WORDS 35
Anagrams 35
Buzz-Phrases 39
Limericks 44
Catalogue 49
Chapter 4 - NUMBERS 57
Fractions 57
Polynomials 61
Calculator &6
Chapter 5 - COMPILER 73
Assignment 74

SPL 85

SPL Programs: 91
Bubble Sort 91
Crawling Snake 92

Primes g3

Write Hexadecimal 93
Greatest Common Divisor 94
Multiply 94
Mastermind 95
Compiler 96

Biblicgraphy - 119

1 Games

SILVER-DOLLAR GAME

Many two-player games are games of 'complete
information' in which both players Know at every stage
what the outcome of their alternative moves will be.
Thus noughts—-and-crosses is such a game, but bridge is
not because each player's cards are hidden from the
other players. Games of complete information rely for
their interest on their complexity; otherwise it would
be possible for the players to work out from an early
position in the game who has the forced win and how to
achieve it.

In theory, one should be able to play any game of
complete information perfectly. The strategy is
simple: for every possible move at a given stage,
rxamine every possible reply of your opponent's; for
overy reply look at every possible next move, and SO
on. In practice most games contain a prohibitively
large number of possibilities, ruling out this
strategy for even the fastest computers.

Many games of complete information have been
‘solved’; in other words, a simple winning strategy
has been found which, if known to one of the players,
vreduces the task of winning to a straightforward
valculation., The following game, known as the 'Silver
hollar Game', is one such game, and it provides an
excellent example of a game that a computer can play
perfectly with a simple winning strategy.

The original Silver Deollar game is played with a
number of coins which are moved by the two players
along a line of squares. In his turn, a player must
move one coin to the left along as many unoccupied
sgquares as he wishes. For example, a possible move
would be:

] ®] < ® L

The first plaver unable to move, when all the coins
have reached the left-hand end of the line, loses.

In this version of the game the computer is one
player; there are five coins identified with the
letters A to E, and they move along a line of 30 dots.
The starting position is chosen by the program at
random, and the player moves a letter by typing the
letter once for each place it is to be moved. The move
is entered by typing ‘'return', and the computer will
then make its move. The game continues in this way
until one player has won.

For example, the game might start with the
position:

AB......C.....Dic, . uEu. ...

where the dots represent empty sguares. The human
player moves the 'D' to:

AB..CD. it B,
The computer then moves the 'E':
E N 1 5 T

The human then moves the 'C':
2 L b - Y
The game continues: computer:
L
Human ;

L 10 L
Computer:

ABCDE . . o i i ittt

and the computer wins!

Program Operation

The strategy used by the computer relies on the fact
that there are certain ‘'safe’ positions in the game.
No move by the opponent from che of these safe
positions can achieve a safe pesition, so the computer
simply waits until the pPlaver leaves an unsafe
position, and thereafter always moves to safe
positions until it has won.

To see if any position in the Silver Dollar Game
is safe or unsafe, first determine the following three

8

numbers:

it. The number of dots to the left of A.
t». The number of dots between B and C.
<. The number of dots between D and E.

Mow split these numbers into their component powers of
two. If there is an even number of each power of two,
the position is safe; otherwise, it is unsafe.

As an example, take the follewing position:

.+ AL BollLWCLL DLl B
N/ N/ N/
3 5 4

Since there is only one '2', the position is unsafe.
llowever, it can be made safe by moving the A two
places to the left:

Al W.BolloClllDL L WE
I A4 N/

L 5 4

1 =1+4 =4

T"he final safe position is the winning position, when
all the letters are moved to the left.

HBC Computer Version

5 REM ... Silver Dollar Game ...

10 DIM PP(5),TT(2)

20 PP(0)=—1: FOR N=1 TQO S: PP(N)=PP(N-1)+ABSRND MOD
Htl: NEXT

25 P=R;:;CLS:PROCPRINT

| Main icop; keep playing until someone has_won.]

30 REPEAT

35 IF FNWIN PRINT'"I WIN!":END
40 PROCMOVE

50 IF FNWIN PRINT'"YQU WIN!":END
60 PROCI:UNTIL 0

PROCI - Computer's move. Get Nim-sum of gaps, S.
[f it is zero there is no winning move; otherwise
look for move that makes it zero.

1000 DEF PROCI S=0:FOR N={ TO 2

1010 TT{N)=PP(2*N+1)-PP{2*N}-1:5=S EOR TT(N):NEXT
1020 1F S=0 GOTO 1100

1030 N=-1:REPEAT N=N+l: T=TT(N)-{S EOR TT{N)}

104G UNTIL T>Q:N=2%N+1
1050 GOTO 1200

Human has got a safe position, s¢ can only make a
random move.

1100 N=0:REPEAT N=N+1:UNTIL PP(N)-PP(N-1)>=2
1120 T=(PP(N}-PP(N-1)} DIV 2

[Computer has decided its move - now do 1L,]

1200 PROCURSOCR

1250 PP{N)=PP(N)-T

1260 FOR J=1 TO T

1270 FOR K=1T0999: NEXT : PROCBUDGE : NEXT : PRINT
CHRS (30) ; : ENDPROC

[_PRCCPRINT - Print board with counters.]

2000 DEF PROCPRINT
2005 N=0:PRINT CHR$(30)" "::FOR J=1 70 5

2010 IF N<PP{J) REPEAT PRINT"."; :N=N+1:UNTIL N=PP(J)
2020 PRINT CHR$ (J+ASC{ "@") }; : N=N+1:NEXT : REPEAT
PRINT"."; :N=N+1:UNTII, N=30

2030 PRINT CHR$(30);:ENDPROC

PROCMOVE - Input human's move, and move selected
counter. Bleep illegal move.

3000 DEF PROCMOVE

3010 Q=GET:IF Q<ASC("A")OR Q>ASC({"E")PRINT CHRS(7);:
GOTO 3010

3050 N=Q-ASC{™a")

3060 IF PP(N)-PP(N-1)<2 PRINT CHRS(7};:G0TC 3010

3070 PROCURSOR

3075 GOTO 3100

3080 Q=GET:IF Q=13 ENDPROC

3090 IF PP(N)-PP(N-1)<2 PRINT CHRS(7});:G0TO. 3080

3100 PP(N)=PP(N)-1

3110 PROCBUDGE:GOTO 3080

[FNWIN - Returns 1 if game is won.]

4000 DEF FNWIN W=1:FOR N=1TO5:IFPP(N)<>N-1 wW=0
4100 NEXT:=W

(_PROCURSOR _— Moves cursor to under piece N.]

5000 DEF PROCURSOR
5010 PRINT CHR$(30);:FORJ=0 TO PP(N):PRINT CHRS(9});:
NEXT : ENDPROC

10

[PROCBUDGE - Move piece N back one place.

6000 DEF PROCBULGE
6010 PRINT".":CHR$(8);CHRS(8]; CHRS (N+ASC("e"));
CHR${8)}; :ENDPROC

Variables:

J — Counter

K — Delay counter

N - Counter

FP(O)..PP{5) - PP(0)=-1; PP(l} to PP{5) are the
positions of the 5 counters

) — Character read by GET

S5 — Nim sum

S - Move needed to make Nim sum zerc

Tr{Q}..TT(2) - Sizes of Nim-heaps corresponding to a
position

W - Winner flag; W=l if game has ended
Atom Version

5 ... SILVER DOLLAR GAME ...

10 DIM PP5,TT2,00,R-1

20 PP0=-1; FCOR N=1 TO 5; PPN=PP(N-1)+ABSRND%8+1;
NEXT

[Assemble read-character routine at R,

25 P=R;PRINTS$21;[JSR#FFE3;STAQ;RTS;]
28 PRINT$6512:GOSUB p

| Main loop; keep playing until someone has won.]

310aGOSUB w

35 IFW PRINT'"I WIN!"';END
40 GOSUB m;GOSUB w

50 IFW PRINT'"YOQOU WIN!"';END
60 GOSUB i;GOTO a

i - Computer's move. Get Nim-sum of gaps, 5. If it
is zero there is no winning move; otherwise look
for move that makes it zero.

1000i8=0;FOR N=0 TO 2

1010 TTN=PP(2*N+1)-PP{2*N)-1;$=8:TTN;NEXT
1020 IF §=0 GOTO r

1030 N=-1;DO N=N+1; T=TTN-(S:TTN)

1040 UNTIL T>0;N=2*N+l

1050 GOTO j

11

Human has got a safe position, So can oniy make a
random move.

1100rN=0;D0 N=N+1;UNPIL PPN-PP(N-1)>=2
1120 T=(PPN~-PP{N-1))/2

[Computer has decided 1ts move - now do 1%,

12003GOSUR o

1250 PPN=PPN-~T

1260 FOR J=1 TQ T

1270 FOR K=1T0O9%99;NEXT;GOSUB b; NEXT:; PRINTS30;RETURN

[p - Print board with counters,

2000pN=0;PRINTS30" ";FOR J=1 TO 5

2010 IF N<PPJ DOPRINT".";N=N+1;UNTILN=PPJ

2020 PRINTS (J+CH"@") ;N=N+1;NEXT ;DOPRINT". " ; N=N+1;
UNTILN=30

2030 PRINTS30;RETURN

m - Input human's move, and move selected counter.
Bleep illegal move.

3000mLINKR; IF?Q<CH"A"OR?Q>CH"E" PRINTS7:GOTC m
3050 N=?2Q-CH"@"

3060 IF PPN-PP(N-1)<2 PRINT$7;GOTO m

3070 GOSUB ¢

3075 GOTO v

3080gLINKR; IF?0Q=13 RETURN

3090 IF PPN-PP{N-1)<2 PRINT$7;GOTO q
3100vPPN=PPN-J.

3110 GOSUB b;GOTO q

LW - Sets W to I if game is won.

4000wW=1;FOR N=1TO5:IFPPN<>N-1 W=0
4100NEXT ; RETURN

[_c ~ Moves cursor to under piece N,]

5000¢cPRINTS30;FORI=0 TO PPN; PRINTS$9 ; NEXT ; RETURN

(b - Move piece N back one place.]

6000LPRINT", "S858S (N+CH"@") $8; RETURN

Variables:

J - Counter
K - Delay counter
N - Counter

12

FP{0)..PP{5) - PP(0)=-1; PP(1l) to PP(5) are the
positions of the 5 counters

v - Location containing character read by R

ik - Read-character routine; puts character in ?Q

% — Nim sum

1 - Move needed to make Nim sum zerc

Tr(0)..TT(2) - Sizes of Nim-heaps corresponding to a
position

W - Winner flag; W=l if game has ended

CAR MAZE 1

The Following game is more a test of rapid thinking
than a game of strategy or tactics; you have to drive
4 car through a maze, which moves steadily up the
sureen., The maze is randomly generated, but there is
1lways a safe path if you can find it in time. You
have controls to move the car forwards down the
sereen, and to the left or right. If you collide with
one of the walls you must start again! To make the
qame even more difficult the maze moves progressively
laster as the game proceeds.

BBC Computer Version
The BBC Version uses the following controls:

Z - move left X - move right
/ - move forwards

5 REM ... (Car Maze ...

10 B=0:I=6:L=40

12 L%=-226:R%=-195:D%=—233
15 MODE7:VDUZ28,0,24,3%,0

| Set up strings for walls.

20 DIM W$(5)

22 WS(0)=" * * * * "
23 Ws{l)=" * * * * "
24 WS(2)=" * kknkRR * khkxhk * S "
25 WS(3)=" *kkdkkx LEZ L2 khkkk kK kkkkxx M
26 WS(4)=" * KhKK** EEE L 1] Ak KA K * W
27 WS(5)=" * * * ok ok k kK * * * L

“taTt of main ioop here; start car off on line 24
in gcolumn 20.

30 REPEAT CLS:PRINTTAB{0,24);

13

35 ¥=20:Q%=6:G=0:E=200;V=0
40 X=&7FC0:B=X
50 IFY?X<>32 GOTO 200
60 Y?X=&7F:FOR J=0T0 E:NEXT
61 IF G AND 1 GOTO 100
62 PRINT CHRS (10);:X=X-L
63 IF V=0 C=RND(4)+1: D=RND{2}~1:$B=WS$(C):V=4:GOTO
100
65 $B=W$(D):v=v-1
100 B?39=32:G6=G+1:IFE>0 E=E-1
105 ¥»Xx=32

Look for keys; Left decreases Y, Right increases
Y, and Down adds L to X.

110 IF INKEY(L%} Y=(Y+39)MOD 40
120 IF INKEY(R%) Y=(Y+1)MOD 40
130 IF NOT INKEY(D%) GOTOS50

140 IFY?X<>32 GOTO 200

150 IFX<B X=X+

160 GOTC 50

Crash - bleep, and put up score. Wait for space to
play again.

200 Y?X=152:PRINT CHR$(7);CHR$(30); "Scare",G,
" Highscore",H:IF G>H H=G

220 REPEAT UNTIL GETS=" "

230 UNTIL 0

Variables:

@ - Numerical field width

B - Address of bottom line of screen
D% ~ Number of / key

E ~ Speed. E=0 is maximum speed

- Score

- Highest score

- Number of different walls

Delay counter

- Key typed

~ 8creen width

L% =~ Number of Z key

R% - Number of X key

V - Counter for vertical walls
W${0)..W$(4) - strings containing walls
X - Address of start of line containing car
Y - Position of car across screen

CRoHTO
]

Atom Version

The version for the Atom uses the following keys,
which can be read easily from a BASIC program:

14

SHIFT - move left

REPT - move right

CTRL - move forwards

5 REM ... CAR MAZE ...
10 H=0;I=6;L=32

| Set up strings for walls.

20 DIM W{I*L)

22 SW=" * * * * v

23 $W+32=" * * * "

24 SW+H4=" * *hkkkkk * *A ko k LA

25 SWH+IE=" HEkIAFK kkkk*k kkkkkk n

26 SWt+l2g=" * *kkkkk EEEE R 2] kkk kI
*kkkkh * P

27 SW+160=" * *

28 FORN=0TO L*I;IF W?N=#2A W?N=#FF

29 NEXT

Start of main loop here; start car off on line 24

~in column 20.

30gPRINTS12; 74EL=0;PRINT " Frrrrtrrionint

35 Y=16;0@=6;G=0;E=200;V=0
40 X=#81E0;B=#81E0D
50zIFY2X<{>L GOTO x

60 Y?X=160;FOR J=0TC E;NEXT
61 IF G&l GOTO v

62 PRINTS$10D;X=X-L

63 IF V=0 C=ABSRND%4+2; D=ABSRND%2;$B=$(W+C*L);V=4;

GOTO v
65 S$B=S(W+D*L};V=V~-1
100v?#81FF=L;G=G+1; IFE>0E=E~1
105 ¥7?X=L

"Look for keys;
Y, and Down adds L to X.

Left decreases Y, Right increases

110 IF?#B001<128 Y={¥-1)&31
120 IF?#BOD2(=0 Y={Y¥+1)&31
130 IF?#B001(<>0GOTO =z

140 IFY?X<>L GOTO X

150 IFX<B X=X+L

160 GOTO =z

Crash - bleep, and put up score. Walt for space to

play again.

200x¥?X=152;PRINT$7530"score"G"
H=G
210 LINK#FFE3;GOTO s

highscore"H;IF G>H

15

Variables:

Numerical field width

- Address of bottom line of screen

- Speed. E=0 is maximum speed

- 3core

- Highest score

- Number of different walls

Celay counter

~ S¢reen width

- Counter for vertical walls

- String containing walls. $(W+C*L) is wall C
= Address of start of line containing car
~ Position of car across screen

- T e B TR e I o W
H

Computers scem like magic to many people, but the
following program goes one stage further and turns the
computer into a magician enabling it to find a card
chosen secretly by an onlooker. The presentation of
the trick is as follows: the thirteen cards of one
suit are fanned out face down, and the onlocker takes
one and remembers it. The remaining pile of cards is
cut once, and the onlocker then replaces the chosen
card wherever he likes. The pile is then dividdd in
two, and the twoe halves are shuffled together.
Finally, the cards are fanned out face-up on the
table, and the order of the cards is typed into the
computer, representing Ace as 1, Jack as 11, Queen as
12, and King as 13. After a brief pause the computer
announces which was the chosen card! The trick can be
repeated any number of times, and the computer will
almost always be right,

For example, suppose the cards are in the sequence
shown below:

16

fhiving typed in the sequence of cards the program will
prints

¥i) PICKED THE 3

The trick depends for its success on the cards
being shuffled only once, and the shuffle should be of
lhe sort that divides the packet inte two halves, and
merges the two halves back into one pile; this shuffle
is sometimes called a riffle shuffle. The cards can bhe
«ut. at any time, but only into two piles.

Program Operation

The program works by comparing the new order of the
vards with their order the previous time the trick was
performed; for each card a number is calculated which
represents how far the processes of shuffling and
cutting have moved that card freom its previous
neighbours, The higher this score, the more out of
sequence is the card concerned. The card with the
highest score is likely to be the cone that was chesen.

When the programs are first executed they assume
that the cards were in numerical order, ace up to
king. If the cards are not in order when the trick is
performed the computer will, most likely, get the
trick wreng at the first attempt, but in some ways
this adds to the mystery and can be attributed to
"warming up"! Subsequently, the initial order is
replaced by the new order of the cards, as typed in;
lherefore the order of the cards should not be
disturbed between presentations of the trick.

There are cases in which the computer cannot be
vertain about which card was the chosen one. For
rxample, 1f the card is returned to its original
position then no informatien is available to the
computer, Less obviously, if the card is replaced next

17

to its previous neighbour, it is ambiguous whether it
or its neighbour was the chosen card. Cutting the pack
before asking the onlooker to replace the card
encourages him to replace the card in a different
position, wminimising the chances of these events
occcurring.

BBC Computer Version

10 REM ... Card Trick ...
20 DIM A(13),B(13),5(13}

The cards are represented by the numbers 1 (for
ace) to 13 (for king). First time, assume cards in
order. Then the sequence of cards is read in.,

30 FOR J=1 TO 13: A{J)=J: NEXT J
40 PRINT "ENTER YOUR CARDS"

50 FOR J=1 TO 13: ${J)=0

60 INPUT B(J): NEXT J

Each of the cards in the previous sequence A{J) is
searched for in the new sequence, and itsg position
there is subtracted from the positions of each of
the cards that were its neighbours in the previous
sequence. The sequences are considered as
circular, so 13 is added to any difference that
turns out negative.

70 T=A{13): PROCFIND

80 FOR J=1 TO 13: L=X: R=T
30 T=A{J): PROCFIND
100 O=X-L: IF Q<0 THEN Q=0+13

distance from the other neighbour, is saved as

The cards distance from one neighbour, plus its
that card's score.

110 S{T)}=8{T)+Q: S(R)=3(R)}+0
120 NEXT J

The card with the maximum score is found and
displayed as the chosen card.

130 M=0

140 FOR J=1 TO 13: A{J)=B(J)
150 IF S(J)>=M THEN Z=J: M=S(J)
160 NEXT J

170 PRINT "YOU PICKED THE "; %
180 GOTO 40

18

PROCFIND - Find card T in array B, and return

number in X.

200 DEF PROCFIND
210 FOR K=1 TO 13: IF T=B(K) THEN X=K
220 NEXT K: ENDPROC

Variables:

Afl)..A(13) - Old array of cards
wil)..B{1l3) - New array of cards

I - Counter

M - Maximum score

S{1)..8(13) - Scores for each card

Aom Version

10 REM ... CARD TRICK ...
20 DIM AA(13),BB(13},55(13); @=0

The cards are represented by the numbers 1 (for
ace) to 13 {(for king}. First time, assume cards in
order. Then the seguence of cards is read in.

30 FOR J=1 TC 13; BA(J)=J; NEXT J
40 PRINT "ENTER YQUR CARDS"'

50 FOR J=1 TO 13; 8S{J)=0

60 INPUT B; BB{J}=B; NEXT J

lFach of the cards in the previous sequence BA({J)
is searched for in the new sequence, and its
rosition there is subtracted from the positions of
cach of the cards that were its neighbours in the
previous sequence. The sequences are considered as
circular, so 13 iz added to any difference that
turns out negative.

70 T=AA(13); GOSUB f

80 FOR J=1 TO 13; L=X; R=T
90 T=AA(J); GOSUB f

100 Q=X-I.; IF Q<0 THEN Q=0Q+13

The cards distance from one neighbour, plus its
distance from the other neighbour, is saved as
that card's score.

116 S5{T)=88(T)+0; SS(R)=58{R}+Q
120 NEXT J

The card with the maximum score is found and
digsplayed as the chosen card.

130 M=0

140 FOR J=1 TO 13; AA(J)}=BB(.J)
150 IF S$S8(J)>=M THEN %=J; M=55{.J}
160 NEXT J

170 PRINT "YOU PICKED THE " 7'
180 GOTO 40

[_f - Find card T in arrady BB, and return number In

210fFOR K=1 TO 13; IF T=RBB(K) THEN X=K
220 NWNEXT K; RETURN

Variables:

AA(l)..AA(13) - 0ld array of cards
B - Card entered
BB(1)..BB(13) - New array of cards

J - Counter
M - Maximum score
58(1}..88(13) - Scores for each card

0

2 Graphs

’ PATTERNS

Some very beautiful patterns can be generated from a
vory simple set of rules. The following program
1cates a variety of wunpredictable patterns,
ontaining many curves, simply by drawing a series of
line segments. The lines are drawn between two points
which move in straight lines across the screen. When
+ither point reaches the edge of the screen it is
teeflected, like a billiard ball. On reaching a certain
complexity the pattern is undrawn, line by line,
renulting in startling effects as parts of the pattern
e eliminated before others.

Sample plot:

wiC Computer Version

The: BBC Computer version uses integer variables for
maximum speed, and the 4-colour graphics mode

Ghi

available on the Model A. Successive lines are drawn
in different colours to give a rainbow effect.

10 REM ... Patterns ...
20 Cs=1
30 DIM XX%{3),Z2Z%(3)},VV%{(3),CC8%(3),WW% (3}

Choose 160x256 4-colour graphics mode. Define
logical colour zero (background) as physical
colour 4 (blue), and logical colour 3 ({white) as
physical colour 2 {green); turn cursoer off.

40 REPEAT MODES

45 VDU1%9,0,4;0;19,3,2:0;:23;82004;0;0;:0;

50
CCR%{0)=1280:CC%{1)=1024:CC8{2)=CC%(0):CCH{3)=CC%(1}

60 FOR I%=0T03:XX%(I%)=ABSRND:VV%(I%)=ABSRND MOD4*8§

70 XX%({I%}=XX%{I%) MOD
CCB{I%):ZZ8{I%)=XX%(I%)+CC%{I%) :NEXT

B0 FOR G%=5T0O7 STEP2

Map two pairs of coordinates (ZZz(0),22(1)} and
(22(2),22(3)) onto screen window as (WW{(0) ,WW(1l))
and {(WW(2),WW{3)).

%0 REPEAT FOR I%=0TQ3:ZZ%(I%)=22%{I%}+VV3{TI%)
100 WW%(I%)=ABS(ZZ%{I1%)MOD{CCRE{I%)I*2)-CCR{I%})
110 NEXT
120 C%$=C%MOD3+1:GCOLO,C%

130 MOVE WW3(0),WW% (1) :PLOTGS,WWS(2),WW3(3)

Keep plotting 1in different colours until return to
starting coordinates, then repeat in black to
clear picture.

140 UNTIL WW${0)=XX%(0) AND WW%({1l)}=XX%{1} AND
WWR{2)=XX%{2) AND WW%(3}=XX%(3}
150 NEXT:UNTIL 0

Variables:

CC%{0)..CC%(3) - Screen coordinates

C% - Current colour 0-3

G% - Plotting cede; G%=5 gives plotting in white, and
G%=7 gives plotting in black

1 - Index for arrays

VVv%(0)..VvV%{3) - Vectors by which the two balls move
at each stage

WW$(0)..WWs8(3) - Coordinates of two bouncing balls
XX%(0)..XX%(3) -~ Starting coordinates of balls
22%(0)..22%(3) - Coordinates of bhalls before mapping
them to the screen; all positive

22

A om Version

The Atom version uses the 256x192 graphics mode, and
|>lols the lines in white.

10 REM ... PATTERNS ...

1% DIM XX3,223,VV3,CC3,WW3

20 Do CLEAR4

25 CC0=256;CC1=192;CC2=CC0;CC3=CC1l

10 FOR I=0TC3;XXI=ABSRND;VVI=ABSRND%4*2
40 XXI=XXI®%CCI;2Z2I=XXI+CCI;NEXT

45 FOR G=5T07 STEPZ

{#%2,223) onhto screen window as (WW0,WWl) and

Map two pairs of coordinates (ZZ0,ZZ1) and
(WW2,WW3).

%0 DO FOR I=0TO3; ZZ1=ZZI+VVI
5 WWI=ABS(ZZI%(CCI*2)-CCI)
60 NEXT

65 MOVE WWO ,WWL1;PLOTG,WW2,WW3

cnordinates, then repeat in black to clear

Keep plotting in white until return to starting
picture.

70 UNTIL WWO=XX0 AND WWl=XXl AND WW2=XX2 AND
Wi 1 -XX3
9} NEXT;UNTIL 0O

Vat Lables:

e, .CC3 - Screen coordinates

¢ - Pleotting code; G=5 gives plotting in white, and
. 7 gives plotting in black

! - Index for arrays

wvil..VV¥3 - Vectors by which the two balls move at each
slage

WWi, .WW3 - Coordinates of two bourncing balls

XX0..XX3 — Starting coordinates of balls

v, .%%3 — Coordinates of balls before mapping them to
1 e screen; all positive

turther Suggestions

A variant on these patterns can be obtained by
1eplacing line 45 with:

45 FOR H%=0TOl;G%=6

o1 its equivalent on the Atom. The lines will then be
dtawn by inverting the screen.

The spacing of lines on the screen is determined
by the values of VW%(0) to VV%(3) set in line 30. In

23

the versions given above these values are constrained
to be even, to limit the life of each pattern, but
this can be altered to vary the spacing,

CONTQURS

The following very simple program plots an extremely
intricate and colourful pattern, from a function given
in the program. In effect, the program evaluates the
function at every point on the screen, and plots a
coloured point the colour of which depends on the
value of the function at that peint. The result ig a
contour map of the functicn, with successive contour
lines shown in different colours.

The plot shown below is produced by the eqguation
2=X"2+y " 2+xy (rearranged to increase the speed }, which
produces a series of elliptical contours. The
secondary circles near the edges of the pattern are
caused by an interaction betwszen the ellipses and the
screen matrix:

BBC Computer Version

For the BBC Computer version the program uses mode 5,
available on the medel A, which gives 4 colours at a
resolution of 160x256. Integer variables are used, for
maximum speed:

24

“ HEM ... Contours ...
|y MODE 5

Turn cursor off, then for every point on the
sereen plot a point whose colour depends on the
function.

1% VvbU 5

20 FOR X%=-80 TO 80: FOR Y%=-128 TO 128
0 GCOL 0, ({X%* (X$+Y%}+Y%*Y%)/100) AND 3
40 PLOT69,(X%+80)*8,(Y%+128)*4

50 NEXT: NEXT

60 END

Alom Version

Ther Atom version uses mode 4a, which gives 4 colours
al i resolution of 128x192:

5 REM ... CONTCURS ...
L3 CLEAR 4

ror every point on the screen plet a point whose
colour depends on the function,

20 FOR X=-64T064; FOR Y=-36T096
30 COLOUR({X* (X+Y}+¥Y*Y)/100Q)

40 PLOTL13,(X+64),{Y+96)

50 NEXT ;NEXT

60 END

Further Suggestions

'he following functions can be tried, in line 30 of
| lhee programs:

Function: Contour shape:
(X*X+Y*Y) /100 Circles

({X* (X+Y)+Y*Y) /100 Ellipses
{X*X-¥*Y) /100 Hyperbolae
{X*(X+¥)-¥Y*Y} /100 Bent hyperbclae

The constant, 100, can be increased te increase the
width of the coloured bands.

ROTATION 1

This program plots a three-dimensional view of a
surface using high-reselution graphics. To give a

25

solid appearance to the surface, lines which lie
behind the surface are not plotted; in other words,
the program incorporates ‘'hidden-line removal'. The
function for evaluation is given in line 80 of the two
versions of the program, and can be any surface of
revolution, in which the height, ¢ is simply a
function of the radius from the centre, R,

As an example, the equation:
0={R-1)*SIN(24*R)

where the SIN function gives a rippled effect, and the
(R-1) factor causes the ripples to die away towards
the edge:

BBC Version

The BBC Computer version uses the medium-resclution
graphics mode, with a resolution of 320x236. The
origin is set to 640,512, the centre of the wvirtual
graphics screen.

1l REM ... Rotation ...

["Set up graphics resclution.

10 MODE 4: VDU 29,640;512;: XS=4: YS=4
20 A=640: B=A*A; (=512

[Plot for every X coordinate.]

30 FOR X=0 TO A STEP XS: S=X*X: P=SQR(B-5)

50 FOR I=-P TO P STEP 6*YS '

26

tlalculate R = distance from centre and solve
lunction; Q@ = height, Give Y coordinate, with
correct perspective,

70 R=SQR({S+I*I)/A
B0 Q=(R-1}*SIN(24*R)
90 Y=I/3+Q*C

| For first point, set maximum and minimum.

95 IF I=-P THEN M=Y:; GOTO 110
100 IF ¥>M M=Y: GOTO 130

145 IF ¥>=N GOTO 140

110 N=Y

[rlot points symmetrically each side of centre.

30 PLOT69,-X,Y: PLOT69,X,Y
140 NEXT I: NEXT X
50 END

variables:

A - X resolution

I - square of X rescolution

i - Y resclution

I - Distance along X axis

M - Highest point plotted

N - lowest point plotted

U - height of functicn

it - radius from centre

X — X coordinate from centre
Y - Y coordinate

X11,¥5 - Virtual points per screen point

Alom Version

The Atom version uses the Atom's highest graphics
mode, mode 4, which has a resolution of 256x192. The
program needs several changes to work with the Atom's
I loating-point statements. Floating-point variables
prefixed by '$#' must be used, although some of the
variables are kept as integers since these take only
inleger values.

The first c¢hange is to replace the original
program's FOR...NEXT loop by a floating-point
. ., JFUNTIL loop, so that:

R I=-F TO P STEP 6%*Y¥YS

NIEXT I

in the BBC Computer version becomes ;
$I=-%P; DO

$I1=3I+4; FUNTIL RI>=%F
in the Atom version.

The IF statements in the BBC Computer version must
be changed to FIF statements to ensure that the

comparisons are performed on floating
Finally, on the Atom we can take advant
that lower-case labels can be us

instead of line numbers.

1 REM ..ROTATION..

-point numbers.
age of the fact
ed in GOTO statements

[Set up graphics resolution.]
10 CLEAR4
20 A=128;B=A*A;C=96

[Plot for every X coordinate.]

30
40

FOR X=0 TQ A
S=X*X: %P=5QR(B-S5}; %I=-%P

Calculate %R

= distance from centre and solve
function; %Q = height. Give Y coordinate %Y, with
cerrect perspective.,

60
BO
g0

i

DO RR=SQR(S+$I*%1)/A
$O0=(¥R-1)*SIN{24*%R)
BY=81/34+30Q*C

| For

first point, set maximum and minimum.

95
100
105

FIF %I=-%P $M=%Y;GOTCb
FIF $Y>%M %M=2%Y;G0TOa
FIF $Y>=%N GOTOc

110b¥N=%Y
115a%Y=C+%¥

[Plot points symmetrically each side of centre.

—

120

PLOT13, (A-X),%Y; PLOT13, (A+X), %Y

135c%I=%1+4; FUNTIL %I>=%P

145
i50

28

NEXT X
END

Var tables:

I X resolution

I sgquare of X resolution

. Y resolution

1 listance along X axis

WM Highest point plotted
wN - lowest point plotted

%y - height of function

wii - radius from centre

X X coordinate from centre
%Y - Y coordinate

ur ther Suggestions

hnolher function can be obtained by altering lines 80
andl 90 of the programs to:

HO Q=COS(R*5)*EXP(-R)
40 Y=I/3-Q*C-5

{1m1 the BBC Computer version, or for the Atom:

HO %0=COS{%R*5)*EXP({-%R})
90 $Y=%I/3-%Q%C-5

SURFACE

The last program is the most sophisticated of the
‘itaphics programs in this chapter. It gives a
jrrspective view of a three-dimensional surface viewed
ltom any specified position, even vertically above the
-urface. The program gives the appearance of a surface
tiled with squares, and removes lines lying behind the
-nrface to give a more realistic plot. The hidden-line
routine has wider application, and can be used to add
hidden-line removal to any three-dimensional graph.

The following examples show a peaked surface
inmoduced by the equation:

L UOS(0/1.5)*EXP{-0/51*%5

whiere O is the radius from the centre of the surface.
The program first prompts for the coordinates of the
viewing pesition. The larger the coordinates are, the
ifurther the viewing position will be from the curve,
andd the smaller the resulting surface will be. The
diagrams below are obtained with X=45, ¥=25, and Z=15:

The same curve plotted without hidden-line removal is
shown below:

BBC Caomputer Version

10 REM ...Surface...
20 DIM Q¥({319),R%(319),0%(22),P%(22)

Choose view position, set upper and lower horizons
te top and bottom of screen, and choose 320x256
graphics mode.

30 INPUT"View from; "' "X="L, "y="M, "Z="N
0

40 S=L*L+M*M: R=SQR{S)

B T=S+N*N: Q=SQR(T)

60 FOR I%=0 TO 319: R&(TI%)=255: Q%{I%)=0: NEXT
/) E%=10: MODE4: VDUS

| tean plane, dividing it into squares.

H) FYOR F%=-E% TO E3%+1l: FOR G%=~E% TO E%+1l: U%=X%:
Vih- YWY

t“alculate O = distance from origin, and solve
vquation of surface in terms of 0.

90 O=SQR{FE*F3+GE*G%)
L0 X=-G%: Y=-F%: Z=COS{Q/1.5)*EXP(-0/5)*5

valculate 0 = distance of point from eye, and
{roject point onto screen coordinates (X%,Y%).

T Q=(T-X*[,-Y*M-Z*N)*R

120 IF 0<.1 THEN 200

130 X$=400*(Y*L-X*M} *Q/0+160: IF X%<0 X%=0
140 Y$=500#*(Z*S-N*(X*L+Y*M)) /0+128

1/0 IF G#=-E% Q%(X%)=¥%: R%{X%)=Y%

hraw 2 sides of sqguare on surface, and store
roordinates of previous row.

IH0 IF G%+E% A%=G% AND 1: PROCDRAW

140 IF F%+E$ U%=0%(G%+E%): V$=P%(G%+E%}: A%=F% AND
1 : PROCDRAW

200 0% (GR+E%}=X%: PR{G%+E%)=Y%

210 NEXT: NEXT

420 REPEAT UNTIL FALSE

"ROCDRAW - Draw from U%,V% to X%,Y% wWith
hidden~line removal. Note that line must be drawn
away from cbserver for hidden-line removal to work
vorrectly.

/10 DEF PROCDRAW M%=Y%-V%: N%=ABS(X%-U%): IF N%=0
LR ROC

240 S%={X3%-U%}/N%

250 FOR I%=1 TO N%: J%=US+I%*S%: K%=VS+I%*M%/N%

I1 above upper horizon or below lower horizon make
uew horizon,

270 IF K3>Q%(J%) Q%{J%)=K%

280 IF K%<R%(J%) R%(J%)=K%

290 IF A%=0 THEN 320

100 MOVE4*{J%-5%),4*{Q%(J%-5%)); DRAWA*J%,4*Q%(J%)

310 MOVE4*{J%-5%},4*{R%(J%-5%)): DRAWA*J%, 4*R%{J%)
320 NEXT: ENDPROC

Variables:

A% - Flag - whether to draw

E% - Number of squares across surface

J%,K% - Next point to be plotted by PROCDRAW

L,M,N - Coordinates of view pesition

0%,P% - Vectors holding coordinates of previocus row
for connecting points acreoss. Dimension should be
2*E%+1

Q/R,5,T - Constants for projection

U%,V% ~ Previous screen cocordinates te be plotted
X%,Y% — New screen coordinates to be plotted

Atom Version

10 REM ...SURFACE...
20 DIM Q255,R255,022,P22

Choose view position, set upper and lower horizons
to top and bottom of screen, and choocse 256x192
graphics mode.

30 FINPUT"VIEW FROM:"'"X="8L, "Y="%M, *Z="%N
40 $5=%3L*RL+%M*%M; SR=SQR%S

S0 $T=%S5+&N*3N; $0=SQRST

60 FOR I=0T0255; R?I=191; Q?I=0;NEXT

70 E=10; CLEAR4

Scan plane, dividing it into squares.
P g9

80 FOR F=-E TO E+l; FOR G=-E TOE+l; U=X: V=Y

Calculate %0 = distance from origin, and solve
equation of surface in terms of %0.

90 2O=SQR(F*F+G*G)
100 $X=-G; $¥=-F; %Z2=COS{%0/1.5)}*EXP(-30/5}*5

Calculate %0 = distance of polnt from eye, and
project point onto screen cocordinates (X,Y).

110 30=(3T-3X*3L-3Y*EM-SZ*EN) *%R

120 FIF %0<0.1 GOTO m

130 X=%(400%(SY*SL-$X*%¥M)*%Q/%0)+128; IF X<0 X=0
140 Y=3%(500%($2*3S=-8N* { RX*SL+8Y*¥M)) /%0)+96

Avold plotting outside screen area.
B g

180 IF ¥<0 ¥Y=0
130 IF ¥>191 ¥=191

19

M 1Y G=-E Q?7X=Y; R?X=Y

maw 2 sides of square on surface, and store
vonirdinates of previous row.

S 1K G+E A=GK1; GOSUB d

so0 1F F+E U=07(G+E); V=P?{G+E}; A=F&l; GOSUB d
om0 (GHE)Y=X; P?(G+E)=Y

sS40 NEXY; NEXT

S50 PRINT $7; DO UNTIL 0

Mol that line must be drawn away from observer

o hraw from U,V to X,Y with hidden-line removal.
1ot hidden-line removal to work correctly.

Ab0dM=¥-V; N=ABS{X-U}); IF N=0 RETURN
Al 5={X-U}/N

SO0 FOR I=1 TO N; J=U+I*S; K=V+I*M/N
03 11rJ<0 OR J»255 GOTO e

Il ibove upper horizon or below lower horizon make
m-w horizon.

w0 IR K>Q73; Q?2J=K

10 L[F K<R?J; R?J=K

"1t IF &=0 GOTO e

Y1 MOVE (J-8),{Q0?(J-8)
1} MOVE (J-8),{R?{J-8)
" 2UoNEXT; RETURN

; DRAW J,(Q2J)
: DRAW J, {R2J)

vat iables:

N i'lag - whether to draw

) Number of squares across surface

1,k - Next point to be plotted by PROCDRAW

41.,4M,3%N - Coordinates of view position

«i,1I' - Vectors holding coordinates of previous row for
Connecting points across. Dimension should be 2*E+l
i, R, %5,%T ~ Constants for projection

t1,v - Previous screen coordinates to be plotted

-,¥ - New screen coordinates to be plotted

IFurther Suggestions

«ther pleasing plots can be obtained by altering the
function in line 100 of the programs. Interesting
lnnctions are:

Function: Shape:
Z=(SIN{X*X/L6 }+SIN{Y*Y /16)) Rippled surface
Z=.05% (X*X-Y*Y) Saddle curve

33

A sample plot of the 'saddle curve' is shown below:

The effect of hidden~line removal can be i1llustrated

by replacing the routine PROCDRAW in the BRC Version
by:

230 DEF PROCDRAW MOVE U$%,V%: DRAW X%,Y¥%: ENDPROC

Alternatively, in the Atom version, replace routine d
by:

2304dMOVE U,V; DRAW X,Y; RETURN

34

3 Words

ANAGRAMS

wardn are sequences of letters in exactly the same way
'hat numbers are sequences of digits, but one striking
‘litterence between words and numbers is that whereas
»very sequence of digits is a valid number, not every
mvpuence of letters is a valid word. Thus, although it
in simple to write a program to geherate random
nambeers, it is impossible to write a program to
qoenvrate random words; without, of course, providing
tlee computer with a dictionary in the first place.

The following program illustrates this by taking a
word and finding every possible permutation of the
tvi1ers in that word. Among these permutations will be
w1l 1the anagrams of that word. For example, for the
Intters QOPST the program will give:

WOlD MOPST
nkntk ARE 24 PERMUTATIONS

O
ol
e
e
[0 B R
e
NN
NI N
Y
BEERE
IS
Yl
IR b
KRN
e
ey
AR N
EERN LD

TOPS
TOSP
TPOS
TPSO
TSOP
TSPO

I1f the original string is in alphabetical order,
the program will produce the permutations in
alphabetical order.

Program Operation

The permutation algorithm used by this program is one
of the most efficient in producing a sequence of
permutations in alphabetical order. It works as
follows:

The first permutation is cbvicusly the characters
in alphabetical order; so, taking as an example the
characters "ABCDEF", this is the first permutation.
The last permutation is also obvious: it is the
sequence of characters in reverse order, "FEDCBA".

To obtain the next permutation from any given
sequence of letters, such as BCFEDA, we scah
right~-to-left looking a character that is smaller that
the previous character. This will be called character
'I'. This character is then exchanged with the next
higher character to its right, which will be called
character 'J':

O
o—g

BDFECA

We then reverse the order of all the characters to the
right of character I:

BDACETF

The result, "BDACEF", is the next permutation in
alphabetical order.

I6H

Wit Computer Version

I kREM ... Anagrams ...
40 INPUT"STRING"AS

vow{l)=1, CC%(2)=2 .., CC%{N)=N . Calculate number

et oup array of letter positions such that
<l pormutations, factorial N.

" N-LEN(AS):DIM CC%(N)

AT

100 +OR J=1TON:CC%{J)=J:F=F*J:NEXT

1 PRINT "THERE ARE"™ F " PERMUTATIONS™ !

‘ binplay first permutation. Then permute word, and
.Il.'ll:l."ly.

T PROCDISPLAY

Lo FOR H=2TOF : PROCPERMUTE : PROCDISPLAY : NEXT
1.0 HND

b CC%{1l) to CC%(N), a call to PROCPERMUTE will

o PEUIMUTE ;. permute word. Given any permutation
liml the next permutation.

LS00 DEF PROCPERMUTE I=N-1; J=N

Ao 0K CCR{I)>=CC%{I+1l) I=I-1: GOTO 205
S0 b CCR(T)<=CC%(I) J=J-1: GOTO 210
S PROCSWAP

S0 1=I+1:3=N:IF I=J ENDPROC

JA0 Iy PROCSWAP: I=I+l: J=J-1:UNTIL I>=J
240 KNDPROC

[1mawsWAP: Swap elements I and J.

1) DEF PROCSWAP T=CC%{I):CC%{I)=CC%(J)
e CC%(J)=T:8=1-5: ENDPROC

| ¢HOCDISPLAY: Print permutation.

4t DIF PROCDISPLAY PRINT':FOR K=1TON
410 PRINT MID$ (AS,CC%{K),CC%(K+1));
1.0 NEXT : ERDPROC

S talbiless

n Word

|

t
|

|

#(N) - Array being permuted; initially CC(N)=N
Factorial N, number of permutations

! turrent permutation number

. [tems to be interchanged to get new permutation

1 Number of letters in word

iyn of current permutation

Atom Version

The Atom version is virtually identical to the BBC
version given above, except that the '?! operator is
used instead of MID$ to extract characters from the
word in $A (or AS).

30 DIMA(64)
40 INPUT"WORD "$A

Set up array of letter positions such that
CC%(1)=1, CC%(2)=2 ... CC%(N)=N . Calculate number
of permutations, factorial N.

50 N=LENA;DIM CC(N}

60 A=p-1:F=]1;8=1
100 FOR J=1TON;CCJ=J;F=F*J:NEXT
102 PRINT “"THERE ARE"™ F " PERMUTATIONS" '

Display first permutation. Then permute word, and
display.

105 GOSUBd
110 FOR H=2TOF;GCSUBp;GOSUBA ; NEXT
120 END

P - permute word. Given any permutation in CC%(1)
to CC%(N), a call to subroutine p will find the
next permutation.

200pI=N-1; J=N
205 IF CC(I)>=CC{I+1) I=I-1; GOTO 205
210 IF CC{J)<=CC(I) J=J-1; GOTO 210
220 GOSUBs

230 I=I+1;J=N;IF I=J RETURN

240 DO GOSUBs; I=I+l; J=J-1;UNTIL I>=J
250 RETURN

[s - Swap elements I and J.

300sT=CCI ;CCI=CCJ;CCJI=T;S=1~5; RETURN

. d - Print permutation.

400dPRINT ';FORK=1TON;PRINT $A?PCCK ; NEXT ; RETURN

Variables:

$A - Word

CC{N) -~ Array being permuted; initially CC(N)=N
F - Factorial N, number of permutations

H - Current permutation number

38

I,.) - Items to be interchanged to get new permutation
H Number of letters in word
" Sign of current permutation

¥urther Suggestions

the present program will give LEE twice in a list of
thv+ anagrams of the word EEL. An improvement would be
to include a test for repeated letters in the original
worl <],

Although this program will find all the
jerrmutations of a segquence of letters very rapidly, it
tn a very inefficient way of discovering that, for
vknmple, ORCHESTRA is an anagram of CARTHORSE because
Ihere are no less than 362880 permutations to test,
amml a much simpler method could be devised to verify
thnt two words share the same letters.

BIEZ-PHRASES
¥l may sometimes wonder how it is that large
wganizations manage to generate manuals and documents
which are virtually incomprehensible to anyone who

Jdoes not already know everything they are talking
bt The following program may shed some light on
this; it will generate unlimited technical jargon, all
1 which will sound plausible and can be used to pad
+ul any manual or conference paper. The phrases have
Lo chosen to sound as impelling as possible, but of
rwurse the program can be altered to generate random
st pourings on any particular subject.

The following paragraphs were produced by
suecessive runs of the Buzz-Phrase generator:

Similarly, a constant flow of effective
information necessitates that urgent
consideration be applied to the greater
fight-worthiness concept.

As a resultant implication, the
characterisation of specific criteria
requires considerable systems analysis
and trade-off studies to arrive at the
philosophy of commonality and
standardisation,

In respect to specific goals, the fully
integrated test program must utilise
and be functionally interwoven with the

]

structural design, based on system
engineering concepts.

A particular feature of the program is that it prints
the text neatly within the screen-width, without
breaking words at the end of a line. This ensures that
the Buzz-Phrases will be perfectly legible, even on a
40 or 32 character-per-line screen, and the routine
could be useful with other text-output programs.

BBC Computer Version

In this versicn the reguired phrase is selected by
doing a RESTORE to the required line. Note that
because of this the program should not be renumbered.

1l REM . .Buzz-Phrases..
10 wW=40

Print out four parts of phrase, chosen at random.
Wait for a key, then do another.

20 FORI=100 TC 400 STEP 100

30 RESTORE{10*RND(10)+I-10):READSS
40 PROCPRETTY :NEXT I

50 PRINT"."

60 PRINT;:I$=GETS:RUN

PROCPRETTY - Print as many words as will fit in
width W, with 'return' between lines. Look for
next space; concatenate "A" on string to get
around INSTR bug. Put word into C§, remainder of
string back into S§.

80 DEF PROCPRETTY REPEAT: A=INSTR{S$+"a"," ")
B2 C$=LEFTS$(S$,A): SS=MIDS(S5S%,A+1)
84 IF A=0 C§=S$

If word in C§ will not fit on the Iine, do a
'return'. Then print word, until all of string
finished.

86 IF COUNT+LEN{C$} >= W PRINT
88 PRINT C$;: UNTIL A=0
90 ENDPROC

[Choices for first part.

100 DATA"In particular, "

110 DATA"On the other hand, "

120 DATA"However, "

130 DATA"Similarly, ©

140 DATA"As a resultant implication, "

40

I DATA"In this regard, "
l6) DATA"Based on integral subsystem

onsiderations,
I /00 DATA“For

example, "

140 DATA"Thus, "
10 DATA"In respect to specific goals, "

| “lioices for second part.

) DATA"a large portion of the interface
oondination communication

10 DATA"a co

220 DATA™the characterisation of specific criteria

L4 DATA"init
.|.-ur»lopment "
M40 DATA"the
M5 DATA"the
J6l DATA"any
210 DATA"the
conntraints M
JHU DATA"the
s DATR"a pr
Al for subsyste

nstant flow of effective information
iation of eritical subsystem

fully integrated test program "
product confiquration baseline "
assoclated supporting element "
incorporation of additional mission

independent functional principal "
imary relationship between system
m technologies "

| vhoices for &

hird part.

H0 DATA™must utilise and be functionally interwoven

witlh "

1i) DATA"maximizes the probability of project

aness and minimizes the cost and time required for

120 DATA"adds

130 DATA"necessitates that urgent consideration be

pplied ko

specific performance limits to "

140 DATA"requires considerable systems analysis and

vy ade-of £ ostudl
%0 DATA"is f
vocount M

es to arrive at "
urther compounded, when taking into

160 DATA"presents extremely interesting challenges

1/0) DATA"recoghnises the importance of other systems

i the necessi

ty for "

i) DATA"effects a significant implementation of
') DATA"adds overriding performance constraints to

| "heices for last part.

100 DATA"the

sophisticated hardware"

110 DATA"the anticipated fourth generation

Coprpment ™

420 DATA"the subsystem compatibility testing"

110 DATA"the

structural design, based on system

41

engineering concepts"

440 DATA"the preliminary qualification limit"
450 DATA"the evolution of specifications over a

given time period"

460 DATA"the philosophy of commenality and

standardisation™

470 DATA"the greater fight-worthiness concept "
480 DATA"any discrete configuration mode"”
490 DATA"the total system rationale®

Variables:

8% - String for next part of phrase
C$ - current word

I
W
A

- number of DATA statement
- screen width
- position of space in 5%

Atom Version

The Atom does not have READ...DATA statements, so the
strings are selected by assignment statements in

subroutines, using a calculated GOSUBR to select the

required subroutine.

1 REM ..BUZZ-PHRASES..
10 DIM S{128);wW=32

Print ocut four parts of phrase, chosen at random.
Wait for a key, then do ancther.

1

20 FOR I=100 TO 400 STEP 100
30 GOSUB (10*(ABSRND%10)+1I}
40 GOSUB p

50 LINK #FFE3; GOTQO 20

P - Print as many words as will fit in width W,
with 'return' between lines. Look for next space;
current word pointed to by C.

80pC=S; DO A=0; DO A=A+l; UNTIL CP?A=CH" "

Break word at space; if word will not Eit print
'return', Then print word, until all of string
finished.

42

82 CPA=CH""; IF COUNT+LENC>=W PRINT '
84 PRINT $C," ";C=C+LENC+1

86 UNTIL ?C=CH""

88 NEXT; PRINT "."';RETURN

| ¢hoices for first part. il

00 $S="IN PARTICULAR, "“; RETURN

L1 $5="ON THE OTHER HAND, "; RETURN

l20 $S="HOWEVER, "; RETURN
140 $8§="SIMILARLY, "; RETURN

140 $5="AS A RESULTANT IMPLICATION, "; RETURN
150 $8="IN THIS REGARD, "; RETURN

160 $S="BASED ON INTEGRAL SUBSYSTEM CONSIDERATIONS,

*; HETURN

170 $8="FOR EXAMPLE, "; RETURN

180 85="THUS, "; RETURN

190 $S8="IN RESPECT TO SPECIFIC GOALS, "; RETURN

| choices for second part.

A0 $§S5="a LARGE PORTICN OF THE INTERFACE
COORDINATION®

201 $S+LENS=" COMMUNICATION ";: RETURN

210 $S="aA CONSTANT FLOW OF EFFECTIVE INFORMATION “;

1IURN

220 $S="THE CHARACTERISATICN OF SPECIFIC CRITERIA ";
1H1UTURN

230 $S="INITIATION OF CRITICAL SUBSYSTEM DEVELOPMENT
"; HETURN

240 $5="THE FULLY INTEGRATED TEST PROGRAM "; RETURN

250 $S="THE PRODUCT CONFIGURATION BASELINE "; RETURN
260 $S="ANY ASSOCIATED SUPPORTING ELEMENT "; RETURN
270 $5="THE INCORPORATION OF ADDITIONAL"

271 $S+LENS=" MISSION CONSTRAINTS ":; RETURN
280 $S="THE INDEPENDENT FUNCTIONAL PRINCIPAL ";
11V URN

2?90 $S8="A PRIMARY RELATIONSHIP BETWEEN"
291 $S+LENS=" SYSTEM AND/OR SUBSYSTEM TECHNOLOGIES
", RETURN

[thoices for third part.

J00 $S="MUST UTILISE AND BE FUNCTIONALLY INTERWOVEN
Wi'TH "; RETURN

310 $8="MAXIMIZES THE PROBABILITY OF PROJECT SUCCESS
AN

11l $S+LENS=" MINIMIZES THE COST AND TIME REQUIRED
rOR "> RETURN

120 58="ADDS SPECIFIC PERFORMANCE LIMITS TO ";

145" 'URN
330 $8="NECESSITATES THAT URGENT"
331 $S+LENS=" CONSIDERATION BE APPLIED TO "; RETURN

340 $S5="REQUIRES CONSIDERABLE SYSTEMS ANALYSIS AND
TRADE-OFF"
341 $S+LENS=" STUDIES TO ARRIVE AT "; RETURN

43

350 $S="1S FURTHER COMPOUNDED, WHEN TAKING INTC
ACCOUNT "; RETURN

360 $5="PRESENTS EXTREMELY INTERESTING CHALLENGES TO
"; RETURN

370 $S="RECOGNISES THE IMPORTANCE OF OTHER SYSTEMS
AND THE"

371 $S+LENS=" NECESSITY FOR ":; RETURN

380 $S="EFFECTS A SIGNIFICANT IMPLEMENTATION OF ",
RETURN

390 $5="ADDS OVERRIDING PERFORMANCE CONSTRAINTS TO

"; RETURN
L Choices for last part. |
400 $S="THE SOPHISTICATED HARDWRRE "; RETURN
410 85="THE ANTICIPATED FOURTH GENERATION EQUIPMENT
": RETURN

420 $5="THE SUBSYSTEM COMPATIBILITY TESTING M
RETURN

430 $S="THE STRUCTURAL DESIGN, BASED ON SYSTEM
ENGINEERING"

431 $5+LENS=" CONCEPTS "; RETURN

440 $5="THE PRELIMINARY QUALIFICATION LIMIT “;
RETURN

450 $85="THE EVOLUTION OF SPECIFICATIONS QVER A GIVEN
TIME"

451 $S8+LENS=" PERICD "; RETURN

460 $5="THE PHILOSOPHY OF COMMONALITY AND"

461 S+LENS=" STANDARDISATION ": RETURN

470 $5="THE GREATER FIGHT-WORTHINESS CONCEDPT "5
RETURN

480 $S="ANY DISCRETE CONFIGURATION MODE “; RETURN

490 $5="THE TOTAL SYSTEM RATIONALE "; RETURN

Variables:

- Pointer te¢ space

=~ Current part of phrasze
= Random number

= Screen width

- Phrase string

LIMERICKS [

Although it will be a long time before computers can
generate sentences of their own accord, it is possible
to program a computer to generate sentences that will
pass as meaningful provided we restrict curselves to a
small number of possibilities. To illustrate, the

44

mMEHOW

following light-hearted program will construct
linericks according to a set of fairly simple rules.
Nevertheless, the results are sometimes surprising,
and at worst amusing.

Some examples produced by the program are given
Il ows

i GRACEFUL BLAND GROCER FROM KINGS

UNCE DEMOLISHED SOME CAKES AND GREW WINGS
i DEMOLISHED SO LATE

THAT HE LOOKED FOR A PLATE

THIS GRACEFUL BLAND GROCER OF KINGS .

A VICIOUS YOUNG LAUNDRESS FROM SPAIN
ONUCE WANTED SOME CAKES ON A TRAIN

LI WANTED 50O SLOW

THAT SHE WANTED SOME DOUGH

THIS VICIOUS YOUNG LAUNDRESS OF SPAIN .

Each word or phrase in the limerick is selected,
at random, from six alternatives, each of which has
the same number of syllabhles so that the final
lhmerick will scan correctly. The structure of the
limerick is defined as follows, where lower—case words
1n angled brackets, such as <adjective», are to be
toplaced by the actual words selected at random by the
coapuiter

A -adjective w> <adjective x> <noun y> FROM <place z>
thee <verb g> <pnoun> <gqualifier z>

“pronoun y»> <verb g> SO <adverb t>

AT <{pronoun y» <verb> <noun t>

THIS <adjective w> <adjective x> <noun y> OF <place z>

I‘uts of speech, such as <noun>, are replaced by a
wonrd or phrase selected at random from six
imrisibilities. Where two parts of speech are labelled

with a letter, as in <noun y> and <pronoun y>, the two
winnds are chosen as a pair; for example, if <noun y>
wier o "LAUNDRESS", <pronoun y>» would be "SHE",

~amilarly, the <gualifier z> in line 2 is chosen to
thyme with <place z> in lines 1 and 5; for example, if
lace z> is chosen as "FROM KINGS", the second line
mot end with "AND GREW WINGS". Similarly the <noun t>
v line 4 is chosen to rhyme with the <adverb t> in
brree 3. These simple constraints are sufficient to
«im-are that the random limericks will rhyme and scan.

Iy Computer Version

It REM ... Limericks ...

] First Iine of limerick.

20 P=1000:PRINT "A ";

30 PROCRND:W=R:PROCRND:X=R:PROCRND:Y=R
40 PRINT "FROM ";

50 PROCRND:Z=R:PRINT

_Second line.

60 PRINT “ONCE ¥ ; : PROCRND : G&=C$
70 PROCRND :R=Z: PROCWQRD : PRINT

I Third and fourth lines.

80 R=Y:PROCWORD:H$=C$:PRINTG$;"SO ";
90 PROCRND :T=R:PRINT' "THAT
“:HS;:PROCRND:R=T:PROCWORD: PRINT

| Last line.

]

110 PRINT"THIS "; 1P=1000: R=W: PROCWCRD : R=X: PROCWORD :

R=Y ; PROCWORD
120 PRINT"OF " :R=%:PROCWORD : PRINT" . "
140 END

[_PROCRND - Choose random phrase.

200 DEF PROCRND :R=ABSRND MQD 6 : PROCWORD ; ENDPROC

{_PROCWORD - Select Rth word in $C and print it.

220 DEF PROCWORD :RESTORE P
230 FOR N=0 TO R:READ CS:NEXT:C5=CS$+" "
230 PRINTCS; :P=P+100:ENDPRCC

| Strings of phrases.

1000 DATASORDID,GRACEFUL,WILY,VICIOUS,SPARKLING,
REALLY

1100 DATAGREEN,YOUNG,VILE,BLAND,OLD,WILD

1200 DATADUCHESS,GROCER,GLUTTON,FLAUTIST,LAUNDRESS,
SATLOR

1300 DATAWEMBLEY,SPAIN,CHAD,SPEKE,KINGS,FRANCE

1400 DATAWANTED,FOLLOWED,COUNTED,DEMOLISHED,
COLLECTED , SWALLOWED

1500 DATASOME STAMPS,A STOAT,A NUDE,SOME CAKES, A
FROG,SOME MOULD

1600 DATRAND FELT TREMBLY ,ON A TRAIN,AND WENT MAD,
TWICE A WEEK ,AND GREW WINGS,IN A TRANCE

1700 DATASHE,HE, SHE,HE, SHE, HE

1800 DATAQUICK,SLOW,FEW,HARD,LATE,LONG

46

) DATANOTICED ,FOLLOWED ,ASKED FOR,LOOKED FOR,
WHNTED LONGED FOR

A0un DATAA BRICK,SOME DOQUGH,A SCREW, SOME LARD,A
FLATE, KING KONG

o rabless

" ‘itring containing verb used in line 2
" ‘"tring containing HE/SHE

" Pointer to next selection of phrases
I kandom number (0 to ¢

. “tring of phrase options

r Word selected in second line

WoN,Y,Y% -~ Words selected in first line

fAlam Version

fhe Atom version uses a string, $S, to store the six
tIternatives for a particular phrase. This string is
bt 1o the list of alternatives by a GOSUB to a line
whih assigns the string to $S. Note that where the
“traing will not fit onto one line the second half is
~aralenated onto the end of $35 by executing:

CLENS="string"
v lipes 2000 and 2001,

0 HEM ... LIMERICKS ...
I LiM 5(100),6(32),H(32)

| 1'iret 1ine of limerick.]

S0P =1000PRINT "2 ™

1 COSUB s;W=R;GOSUB S;X=R;GOSUB s;Y=R
A PRINT "FRCOM "

W) tIOSUB s; Z=R;PRINT '

i eeead Tine.

-t I'RTNT “ONCE ";GOSUB s:5G=$%C
1 G0SUB s:R=%:GOSUB t;PRINT °

third and fourth lines.

NG 1-Y;GOSUB t;$H=$C;PRINT $G,"SO *
HGOSUR 83 T=R;PRINT '"THAT ",S$H;GOSUB 5:R=T; GOSUB
NN U

ol line.,

PHe PRINT "™PHIS “;P=1000;R=W;GOSUB t;R=X;GOSUB t;
A BRI T
P PRINT "OF ":R=Z%;GOSUB +;PRINT "."!¢

| 48 BHD

n Make a random choice by extracting a substring
trom within the string $s.

200sR=ABSRND%6

t - Select the substring Corrésponding To the
value of R. Scan past R commas, put the string
from there to the next comma, or ‘return', in $cC,
and print it.

210tGOSUB (P);A=0;IF R=0 G.u

220 FOR N=1 TO R;GOSUR C;NEXT;A=n+]
240uC=A+5;GOSUR C;SS+A=" »

250 PRINT $C;P=P+100; RETURN

[.c - Search for comma or end of string. I

300¢cDO A=A+1;UNTIL S?A=CH","™0R S?A=CH""; RETURN

| Strings of phrases.]]

1000 REM WORDS

1001 $s="SORDID,GRACEFUL,WILY,VICIOUS,SPARKLING,
REALLY"; RETURN

1100 $s:"GREEN,Y0UNG,VILE,BLAND,OLD,WILD"; RETURN

1200 $S="DUCHESS,GRDCER,GLUTTON,FLAUTIST,LAUNDRESS,
SATILOR"; RETURN

1300 $S=“WEMBLEY,SPAIN,CHAD,SPEKE,KINGS,FRANCE";
RETURN

1400 $s="WANTED,FOLLOWED,COUNTED,"

1401 $S+LENS=“DEMOLISHED,COLLECTED,SWALLOWED"; RETURN

1500 $S="SOME STAMPS,A STOAT,A NUDE, "

1501 $S+LENS="SOME CAKES,A FROG,50ME MOULD"; RETURN

1600 $S="AND FELT TREMBLY ,0ON A TRAIN,AND WENT MAD,"

1601 $S+LENS="TWICE A WEEK,AND GREW WINGS,IN A
TRANCE"; RETURN

1700 $s="SHE,HE,SHE,HE,SHE,HE"; RETURN

1800 $S=“QUICK,SLOW,FEW,HARD,LATE,LONG": RETURN

1900 $S="NOTICED,FOLLOWED ,ASKED FOR, "

1901 $S+LENS="LOOKED FOR,WANTED ,LONGED FOR"; RETURN

2000 $s8="A BRICK,SOME DOUGH,A SCREW, "

2001 $S+LENS="SOME LARD,A PLATE,KING KONG":; RETORN

Variables:

A =~ Pointer to find commas

G - String containing verb used in line 2
H - String containing HE/SHE

P - Pointer to next selection of phrases
R ~ Random number { to 4

8 - String of phrase options

48

il Word selected in second line.
W,X,¥,% - Words selected in first line.

CATALOGUE

e following program allows you to build up a
+wlalogue of books, records, or telphone numbers. It
rtlustrates how a computer can be used to store
tnlormation, sort it, and retrieve it on command .,

A collection of records of information on a
cmputer is called a "database"; in the following
rwamples we will assume that the records consist of
wanes and telephone numbers. The program allows you to
«iociate a telephone number with each name. You can
theen find out someone's telephone number by typing
'herlr name, Qr as many letters of their name as are
wieded to identify them uniquely. As an example,
‘oiime we are entering the telephone numbers of five
trwople. The symbol '>' is used to prefix a name to be
chlereds

il
COMMAND ?>DEWAR J
Sy 2234
COMMAND?>SMITH P S
Sy 314341
CUMMAND?>NORTH
Sl 2389 x191
COMMAND ?>BOND J
Sl 7789
COMMAND?2>WEST A
11 3456

tvr van then ask for an alphabetical list of the whole
‘litabase, using the "*" command:

CORMMAND P *

Ny J 456 7789
todwfvil J 123 2234
Lol O 119 2389 x191
NI P S 0223 314341

A 145 3456

sIternatively, we can ask for the telephone number of
vy person in the database:

OMMAND 2 NORT

o @ 119 2389 =191
CoMMAND P S

MM PSS 0223 314341

COMMAND ?DEWER
NOT FQUND

An attempt to enter a name already entered will give a
warning message:

COMMAND 2>BOND J
BOND J ALREADY EXISTS

Program Operation

The simplest way to store the records in the computer
would be as a straightforward list. However, it would
then be necessary to search through the whole list
every time a new record was entered, or a record was
being searched for. It would also be difficult to
prcduce an alphabetical list of records, without first
sorting all the records into order, which would be
very time-consuming.

The Catalcogue program therefore holds the records
in a more sophisticated structure, called a ‘tree'.
Associated with every record are two 'pointers', which
can be set to point to other records, or can be marked
as pointing to nothing. As new records are entered, a
tree is built up. Names lying earlier in the alphabet
are inserted on the left-hand side of the tree, and
names later in the alphabet on the right~-hand side of
the tree.

To see how this works in practice, a tree is built
up with the five names given above. The first record
gees at the top of the tree, and its twe pointers are
set to zero, indicated here by 'x', to indicate that
there are no further records below it:

DEWAR
/N

X X

Suppose we then add SMITH. This is later in the
alphabet than DEWAR, and so it is attached toc the
right-hand branch of the tree:

DEWAR

/N

x A\
SMITH
/N
X X

Next we add NCRTH. First the name is compared with
DEWAR, and since it is later in the alphabet we follow
the right~hand branch. Then it is compared with SMITH.
Since it is before SMITH in the alphabet we follow the

50

1t ~hand branch. We have reached the end of the tree,
vinl 30 NORTH is added there:

DEWAR
/N
X AN
SMITH
/ N
/ X
NORTH
VAR

X X

tiaally, we add BOND and WEST, and the tree looks like

DEWAR
/N
/ \
BOND SMITH
7N /N

% x / N
NORTH WEST

/N /N

X XX X

Whi'tt searching the tree for a name we follow the same
[venswdure, until either the name is found, or the end
«t 1 branch is reached in which case the message 'NOT
LMD is glven.

he advantage gained by using a tree structure
“Avpeends somewhat on the shape of the tree; with a
1w rlvetly balanced tree of 31 records, a maximum of
trve comparigsons need to be made to find any record,
v opposed to 31 with a simple list of records. As the
vamberr of records increases, the saving becomes even
areal e,

A tree can be printed in alphabetical order by
oy the following simple recursive procedure:

i pirint the tree starting at a certain name
« |uint the tree pointed to by the left-hand peinter,
|jmint the name,

and print the tree pointed to by the right-hand
oo tribar

v the case of the tree above we obtain:
ety DEWAR, NORTH, SMITH, WEST

BBC Computer Version

5 REM ... Catalogue ..,

10 DIM M$64,T%3:2%=&3C00:F%=61500: HIMEM=I"%
20 1 T%$=0
30 REPEAT PRINT CHR5({12)"command"

Tnput command line. Commands:
* - Print tree
> = Add name to tree,

40 INPUT $M3
50 IF?M%=ASC("*"}PROCPRINT{1T%):GOTO 130
60 IF2MF=ASC(">")GOTO 100

Name on its own - search for 1t. 1f a close match
is found print it (PROCPRINT}, else say 'NOT
FOUND .

70 N¥=M%:X3=T%:5%=1;E%=0; PROCSEARCH
BD IF E% PROCPUT:GOTO 138
90 PRINT "NOT FOUND":GOTO 130

Add name to tree, If no match (not E} then all is
well: otherwise the name already exists.

100 N#=M%+1:X%=T%:E$=0;5%=0:PROCSEARCH
110 IF NOT E% UNTIL FALSE

120 PRINT $N&%;" ALREADY EXI1STS"

130 K%=GET:UNTIL FALSE

PROCSEARCE - Search tree. Operation depends on
value of S:

S5%=0 -~ Add name $N% to tree and input telephone
number when the end of a branch is reached.

5%=1 ~ Search tree for name, and return on a match
of first few characters.

1000 REM SEARCH TREE
1005 DEF PROCSEARCH
101¢ IF 1X%=0 GOTO 1100

Follow down polinter at X%, and compare name $J on
tree with $N. If they match, return. If S$N>$J,
move X% to right-hand pointer; then keep searching
down tree.

1020 X$=!X%:J%=X%+8: PROCCOMP
1030 IF E% ENDPROC

1040 IF C% X%=X%+4

1050 GOTO 1010

52

Iind
[FTS1 M

~of branch. If 8=1 give Gp since the name is
found; otherwise add the name SN to the tree

i here, input the telephone number.

RV
g
1120
130
140

I'||1]M“:

1150

IF S% ENDPROC
YE=X%: I X8=F8:X3=1X%:1X%=0:X%14=0
X3=X%+8: SXI=SN3 : X&=XS+LEN($X%)+1
INPUT $X%:X%=X$+LEN(SX%)+]1

IF(X$ AND &FFFF)}>Z% PRINT "NO
1Y$=0:K%=GET : ENDPROC

F$=X%: ENDPROC

! I'ROCCOMP - Compare strings $J% and S$N% CRaracter

L by

character, and set C% to 1 if SNE>8T%. If

cwcarching the tree, settle for SN% matching the
tirst few characters of $J%; if adding a name to

the tree, insist on an exact match.
L0000 REM COMPARE $J% AND $N%
SO0 DEF PROCCOMP I%=-1:REPEAT I%=T%+1
20 UNTIL J%?I%<>N2?2I% OR N#2I%=13
S0 CE={J%2IE<NE?1%)
“U040 IF 8% E%=(N%?I%=13):ENDPROC
040 E3={$J%=$N%) ; ENDPROC
! I'ROCPRINT - Print tree from 0% downwards. Print

[

iy
ALY
0§
A0
4140
EEIRY]

free on left-hand branch, print record at 0%, then

nt tree on _right-hand branch.

REM PRINT TREE
DEF PROCPRINT (Q%)

IF Q%=0 ENDPROC
PROCPRINT{ 10Q%)

J%=Q%+8: PROCPUT : Q$=0%+4
PROCPRINT(!Q%) : ENDPROC

PROCPUT - Print record at J%. Tabulate telephone
number to column 20.

A0
ERR1]
vy

1T
.
’
’
S
‘
‘
f

REM PRINT RECORD

DEF PROCPUT PRINT $J%;
JE=JY$+LEN($J%)+1: PRINT TAB({20);%$J%:ENDPROC
bles:

Equal flag; E%=1 if a match is found
Next free memory location

Name string on tree

Command line string

- Name string

iiocal parameter for PROCPRINT
Search flag: S5%=1 means search tree; S%=0 means

53

add to tree

T% - Pointer to top of tree

X% ~ Pointer to current position on tree
Y% - Pointer before adding name to tree
2% - Top of available memory

Atom Version

This version of the catalogue program is substantially
identical to the version for the BBC Computer. The
only major difference is that the routine to print the
tree has to save the value of X before re-entering
itself recursively, since on the Atom procedures do
not have local parameters.

5 REM ... CATALOGUE ...
10 DIM M(64),T{3),F{-1)
20 !'T=0Q; Z=§ 3BFF
30 DO PRINT $12"command”

Input command line. Commands:
* - Print tree
? — Add name to tree.

40 INPUT $M
50 IF?M=CH"*"X=!T;GOSUB p;GOTQ n
60 IF?M=CH">"GOTC a

Name on its own - search for it. 1f a close match
is found print it (GOSUB g}, else say 'NOT FQUND'.

70 N=M:X=T;S=1;E=0;GOSUB s
80 IF E GOSUB ¢;GOTO n
90 PRINT "NOT FQUND"';GOTO n

a4 - Add name to tree. If no match {not E) then all
is well; otherwise the name already exists,

100aN=M+1; X=T;E=0;5=0;G0SUB s
110 IF E:1 UNTIL O

120 PRINT $N" ALREADY EXISTS"
l130nLINK#FFE3; UNTIL 0

s - Search tree., Operation depends on value of S:
§=0 - Add name $N to tree and ianput telephone
number when the end of a branch is reached.

8=1 - Search tree for name, and return on a match
of first few characters.

1000sREM SEARCH TREE
1010 TF X=0 GOTO b

54

Follow down pointer at X, and compare name S5J on
tree with $N. If they match, return. If $N>$J,
move X to right-hand pointer; then keep searching
down tree,

1020 X=1X;J=X+8;GOSUB ¢
1030 IF E RETURN

1040 IF C X=X+4

1050 GOTO s

I - End of branch. If 5=1 give up since the name
is not found; otherwise add the name SN to the
!ree here, input the telephone number.

1100bIF S RETURN

1110 ¥Y=X;1X=F;X=1X;1X=0;X14=0

1120 X=X+8;5X=SN;X=X+LENX+1

1130 INPUTSX;X=X+LENX+1

1140 IF X&4FFFF>%Z PRINT "NO ROOM™;
I ¥=0;LINK#FFE3; RETURN

1150 F=X;RETURN

¢ —- Compare strings $J and $N character by
character, and set C to 1 if $N>$J. If searching
the tree, settle for §N matching the first few
characters of $J; if adding a name to the tree,
tnsist on an exact match.

ZU00cREM COMPARE $J AND SN
2010 I=-1:D0 I=T+1

2020 UNTIL J?I<>N?I OR N?I=13
2030 C={J?I<N?I)

2040 IF S E=(N?I=13):RETURN
4050 E={$J=$N);RETURN

P — Print tree from X downwards. First save X on
stack. Print tree on left-hand branch, recover X
and print record at X, then print tree on
right-hand branch.

1000pREM PRINT TREE

4'10 IF X=0 RETURN

1020 'FP=X;F=F+2;X=1X;GOSUB p
4330 F=F-2;X=IF

4040 J=X+8;GOSUB q;X=X+4
1350 X=1X;GOTO p

4y - Print record at J. Tabulate telephone number
to column 20.

“000GREM PRINT RECORD

| =

5010 PRINT $J;DOPRINT " ";UNTIL COQUNT=20
5020 J=J+LENJ+1;PRINT S$J';RETUKN

Variables:

E - EBqual flag; E=1 if a match is found
F - HNext free memory location

J - Name string on tree

M - Command line string

N - Name string

8 - Search flag: S=1 means search tree; 5=0 means add
to tree

T - Polnter to top of tree

X - Pointer to current position on tree
Y - Pointer before adding name teo tree
Z - Top of available memory

Further Suggestions

The program is not restricted to names and telephone
numbers; in fact either field may be any sequence of
up to 64 characters, and the whole of the first field
is used for the alphabetical ordering.

& useful extension to the program would allow the
database to be saved and lcaded to and from tape. The
values of !T% and F% {or !T and F in the Atom version}
should be saved with the tree, since these give the
address of the top of the tree and the next free
location in memory respectively.

56

4 Numbers

It comes as no surprise that computers can perform
mmerical calculatiens. For example, most computers
will allow you to type in:

CHINT 29*173

anidl the result 5017 will be printed. However, there
a1 some distinct limitations to the calculatiens that
her computer can perform unaided. For example, suppose
wee bype:

PRINT 1/2 + 1/3

The: computer will probably print 0.833333 {or even

liss helpfully, 0) rather than the answer we would
like, namely 5/6.

Alternatively, suppose we type in:
FRINT (X-1)*(X*X+X+1)

the result will depend on the particular value of X; a
me>re useful answer would be the simplified form of the
vxpression, X"3-1 (where '"' means "raised to the
power™) .

Finally, suppose we enter:
PRINT 9999%9599*%9999

Jdesiring the exact answer 59%70002999%. In fact we
will get 9.99700030Ell on the BBC Computer, or the
lvss obvious answer 1120133679 on the Atom.

The three programs in this chapter solve these
preblems, and illustrate some of the different ways of
representing numbers on a computer.

FRACTIONS

Must computer languages, including BASIC, provide
tunctions and operations involwving integers such as

57

127, or fleoating-pecint numbers such as 12.73, cor both.
However, on some occasions we may wish to perform
calculations involving fractions, such as:

1/2 + 1/3

with the results given as an exact fraction, such as
5/6, rather than the less obvicus, and less accurate,
decimal $,.8333333.

The following program will take a calculation
involving fractions, and give an exact fractional
result {(where possible). For example:

EVALUATE: 1/4 + 5 * 7/68
1/4 + 5 * 7/68 = 13/17

The result can be given either in improper form, such
as 7/6. or proper form, such as 1+1/6. The program
detects if the result cannot be expressed as a
fraction with sufficient accuracy, as shown 1in the
following two examples:

EVALUATE: 3.14159%9292
3.14159292 = 355/113

EVALUATE: Pl
PI = IRRATIONAL

The program would be useful for mathematical analysis,
or for teaching the concept of fractions to children.

Description

The program evaiuates the IWNPUT line using
floating-point arithmetic, and converts the result
from a floating-point number into a fraction. The
method involves the construction of what is called a
'continued fraction', by repeating the following two
simple steps until an integer is obtained:

a. Take the reciprocal [(i.e. one divided by the
number)

b. Subtract the integer part.

This can be illustrated by the following example,
which converts 0.764705882 into a continued fraction:

x = {.764705882
1/x = 1.30769231
1/x - 1 = {,307692307
1/{1/x - 1) = 3.25

1/{l/x - 1) - 3 = (.25
1/(1/{(1/x - 1} - 3) = 4

Finally, solving the eguation for x in the last line
gives the exact answer that x = 13/17.

58

nHC Computer Version

In this version an integer wvariable, I%, is used to
»alculate the integer part of the number at each stage
1« avoid having to use the INT function. The remaining
variables are left as fleating-point wvariables for
hrovity. An "ON ERROR" statement detects syntax errors
when the input equation is evaluated using EVAL,

1 REM ... Fractions ...

‘ Set up error return for errors other than escape |
{17).

10 ON ERROR IF ERR<>17 PRINT"WHAT?":GOTO60 ELSE END
20 gs=1

elect whether fraction is to be displayed in
proper or improper form.

30 REPEAT INPUT'"PRCPER (P} OR IMPROPER (I)?" PS
40 UNTIL PS="P" OR PS$="I"

60 REPEAT E=9E-8

70 INPUT "EVALUATE:"“EQS$: PRINT EQS$;" = ";

B0 S&="+"; X=EVAL(EQ$): IF X<0 Sg$="-"

90 X=ABS X: I%=X: R=X-I%

part negligible, treat as integer. If no integer

Multiply accuracy by integer part. If fractional _]
part, more error tolerated.

95 IF I%<>0 THEN E=X*E
100 IF R<=E GOTOL110

101 IF I%=0 THEN E=E*R
102 IF ABS(R-1)>E GOT0120
L04 Ig=T%+1

110 IF §$="-" PRINT 5§;
112 PRINT I%; UNTIL FALSE

| Now do fractional part,]

120 IF S§="-" PRINT S§;
130 IF I%<>0 AND PS$="P": PRINT 1%,S$;: I%=0: X=R
190 K=1:L=1:M=0:J=I%

| Work out continued fraction for R. i

200 REPEAT R=1/R: I%=R
204 R=R~I%

210 N=J; J=J*I%+K: K=N
220 N=L: L=L*I8+M: M=N
230 UNTIL E>=ABS{X-J/L)

59

Test whether irrational. Choose 0.0033 so that PI
comes out as irrational, but 355/113 is real.

240 IF ABS(J*L)*ABS(X-J/L)/X >0.0033
PRINT"IRRATIONAL":UNTIL FALSE
250 PRINT J"/"L: UNTIL FALSE

Variables:

I% - Integer part of %X

J - Numerator of fractional representation

L - Denominator of fractional representation
P$ - Proper "P" or improper "I" flag

R - Real part of X

55 - Sign of %X

X - Absolute value of rational

Atom Version

The Atom does not have an EVAL function, but
fortunately the FINPUT statement in Atom BASIC will
accept an expression in the input line. The input line
is entered at address 320, so PRINT $320 in iine 70
will echo the line.

1 REM .. FRACTIONS ..
10 DIM P{1),8(1),E{100Q)

[Set up line to be executed onh an GLror. N

20 €=0;?16=E;?17=E/256; SE="PRINT ""WHAT?""';G.s"

Select whether fraction to be displayed in proper
or_improper form.

30 DO INPUT'“"PROPER (P) OR IMPROPER {I)"sp

40 UNTIL $P="P" QR S$pP="1"

50sD0 %E=9E-8§

70 PRINT"EVALUATE"; FINPUT %X; PRINT $320" = "
BD $S="+";FIF%X<0 $8="-"

90 ¥X=ABS%$X;I=%X;$R=%X-I

part negligible, treat as integer. If no integer

Multiply accuracy by integer part. If fractional
part, more error tolerated.

95 IF I<>0 THEN R%E=%X*3E
100 FIF %R<=%E GOTO i
101 IF I=0 THEN %E=%E*%R
102 FIF ABS(%R-1)>%E GOTO r
104 I=I+1

110iIF $S="-"PRINT $8§

60

112 PRINT I;UNTIL 0

[Now do fractional part.]
120rIF $5="-" PRINT §S
130 IF I<>0 AND $P="P" PRINT I,88; I=0; %X=%R
180 SE="PRINT ""IRRATIONAL""':GOTOQ g™

190 K=1;L=1;M=0;J=I

[Work out continued fraction For IR, |

200 DO $R=1/%R;I=%R

204 RR=%R-I

210 N=J;J=J*I+K;K=N

220 N=L;L=L*I-+M;M=N

230 FUNTIL $E>=ABS(%X-J/L)

Test whether irrational. Choose 0.0033 so that PT
cemes gut as irrational, but 355/113 is real.

240 FIF ABS(J*L)*ABS({%X-J/L) /%X >0.0033 PRINT
"IRRATIONAL": UNTIL 0
250 PRINT J"/"L;UNTIL §

Variables:

[- Integer part of %X

! — Numerator of fractional representation

. — Denominator of fractiocnal representation
5P ~ Proper "P" or improper "I" flag

"R - Real part of 3X

55 - Sign of %X

*X ~ Absclute value of rational

POLYNOMIAL

'olynemials are important in several branches of
mathematics because many continuocus functions are
represented by polynomials., The familiar quadratic
ryuation is a polynomial of degree 2, and its general
lorm is;

ax"2 + bx + c
where '"' means "raised to the power ",

The present program is a general-purpose
rolynomial manipulater. It will simplify an equation
'w a polynomial of integer coefficients, and can adad,
subtract, multiply, and divide pPelynomials. The

program first asks for the deqree of the polynomial;
that is, the highest power of X represented. For
example:
DEGREE? 4
SIMPLIFY:{X+2)*(3-X)*(X+1)"2
will give:
-~ X4 - X"3 + 7X"2 + 13X + &
and:

DEGREE? 3
SIMPLIFY: (X" 3+1)}/(X+1)

will give:
X2 -x+1

Program Description

The program works by substituting different values of
X in the equation to be simplified, to obtain a series
of values of Y. For example, the first equation above
produces:

X: 0 1 2 3 4
Y: 6 24 36 0 -150

A 2-stage procedure is then used te¢ obtain the
polynomial coefficients from these wvalues. This
procedure involves taking differences between
successive members of the series, and these
differences are divided by the number of the row:

X: 0 1 2 3 4
¥: 6 24 36 0 =150
18 12 ~36 =150
c=1 18 12 -36 =150
-t -48 -114
Cc=2 -3 ~-24 -57
-21 -33
Cc=3 =7 -11
-4
C=4 -1

The next stage involves taking the series of numbers
on the left-hand side of this triangle of differences,
namely:

6, 18, -3, -7, -1.

These numbers are then transformed .Lnto the
coefficients of the polynomial by the following
procedure:

a. Start with N one less than the degree (3 in this
casel}.

62

I'. Subtract N times the last number from its
't cdecessor.

". Subtract (N-1) times the last two numbers from
lheir predecessors.

. Repeat step b until N=0.

Ib the present example the series of coefficients
jrroduced is:s

t, 13, 7, -1, -1.

¢ Computer Version

‘the BBC Computer BASIC allows negative numbers to be
raised to integer powers: therefore the '“! operator
+an be used in the expression to be simplified, as in:
(%-1)"6.

10 INPUT "DEGREE?"N
20 INPUT "SIMPLIFY:" X$
30 DIM CX{N):@%=1

| Evaluate equation for successive values of X.

40 FOR X=0 TQ N:PROCE:NEXT

| Keep taking differences. 1

50 FOR C=1 TO N

60 FOR J=N TO C STEP-1

70 CX{J)=(CX(T)-CX(J~1}) Div C
80 NEXT J:NEXT C

Transform differences into coefficients of
polynomial.

90 FOR C=N-1 TO { STEP-1
100 FOR J=C TO N-1
110 CX{J)}=CX{J)-CX(J+1}*C
120 NEXT J:NEXT C

Print non-zero terms of polynomial, with a leading
"-" if first non-zero term is negative.

125 s=(
130 FOR C=N TC 0 STEP-1:IF CX(C)=0 GOTO 160
135 IF CX(C)<Q PRINT " - ";ELSE IF S PRINT " + "

140 IF ABS(CX{C))>1 OR C=0 PRINT ABS({CX{C)):
145 IF C>1 PRINT "X"“;C;

148 IF C=1 PRINT "X";

150 s=1

160 NEXT C:PRINT °

170 END

| PROCE - Evaluate equation here. |

200 DEF PROCE CX{X)=EVAL{X$): ENDPROC

Variables:

C - Coefficient number

CX{0)..CX(N} - Coefficients of X"N in polynomial
J - Counter

N - Maximum degree of polynomial

S - Flag for printing "+" sign

T - Pointer to equation string

X,Y¥ - Unknowns in equation

Atom Version

In the Atom version, powers of numbers and polynomials
should be represented by repeated multiplication:
thus, instead of '(X+1)72' write '(X+1}*{X+1}"'.

10 INPUT "DEGREE"N

[Tnsert equation into line 200 of program.

15 T=TQP;DO T=T-1; UNTIL ?T=CH"e"
20 T=T+43;INPUT "SIMPLIFY"ST

25 T=T+LENT;$T=";R.";T?4=§FF

30 DIM T{64),XX{N);e€=0

| BEvaluate equation for successive values of X.]

40 FOR X=0 TQ N;GOSUB e;XX(X}=Y;NEXT

[Keep taking differences.

50 FOR C=1 TO N

60 FOR J=N TO C STEP -1

70 XX{J)={XX{J)-2x(J-1)}/C
80 NEXT J;NEXT C

Transform differences into coefficients of
polynomial.

90 FOR C=N-1 TO { STEP -1
100 FOR J=C TO K-1

110 XX{J)=XX(J)-XX{J+1)*C
120 NEXT J;NEXT C

64

Print non-zero terms of polynomial, with a leading
"-% if first non-zero term is negative.

125 s=0¢
130 FOR C=N TO 0 STEP =-1;IF XX{(C)=0 GOTQ =z
135 IF XX{C}<0 PRINT " - "; GOTO s

137 IF 8 PRINT " + "

140sIF ABS XX(C)>1 OR C=0 PRINT ABS XX(C)
145 IF C>1 PRINT "X"" C

148 IF C=1 PRINT "X"

150 s5=1

1553zNEXT C;PRINT "'

170 END

| Poke equation to be evaluated into program here.

200eY=X; RETURN

variables:
& — Coefficient number
J - Counter

N - Maximum degree of polynomial

% — Flag for printing "+" sign

' - Pointer to eguation string

XX(0)..XX(N} - Coefficients of X"N in polynomial
X,Y - Unknowns in equation

Further Suggestions

With slight modification the program can be used to
generate a polynomial of specified degree from a set
of data points. For the BBC versicn, alter line 200
to:

200 DEF PROCE PRINT "F("X"}";:INPUTY:ENDPROC

For the Atom version delete lines 15, 20, and 25, and
alter line 200 to:

200ePRINT "F("X")";INPUTY ; RETURN

The program will then prompt for the coefficients:
DEGREE?4

FiD)?6

F(l)?24
F(2}236
F(3)720

{4)?2-150
This will print:

- X4 - X"3 4+ 7X72 + 13X + 6

65

The program cculd also be modified to handle
polynomials with real coefficients, and the Fractions
program c¢ould be used to give the coefficients as
fractions where possible,

CALCULATOR

The following program acts as a calculator, with the
ability to add, multiply, and divide. The unusual
feature provided by the program is that it will
calculate to an unlimited accuracy, restricted cnly by
the amount of memory available to the program.

The pregram uses reverse Polish notation, also
known as Polish suffix notation, in which the operator
follows the operand or operands. This notation is used
on seme scientific calculaters because it allows any
expression to be entered without the need for
brackets.

An expression in reverse Polish notation is:
1 2 + 4 5 + +*

To understand how this is evaluated, imagine the
expression read from left to right. When an operator,
such as '+' and '*', is encountered it removes the two
numbers to its left, performs the operation, and
replaces them with the result. Successive stages in
the evaluation of this equation are:

1 2 + 4 5 +
3 4 5 + «*
3 9 *

27

The equivalent expression in algebraic notation is
{1+2)*(4+5). The great advantage of this notation is
that the order of evaluation is unambiguous, and no
brackets are needed to indicate how the expression is
to be evaluated. Some other equations in algekraic
form are shown below together with their equivalents
in reverse Polish:

Algebraic: Reverse Polish:
2 + 3 + 4 23+ 4+
or 2 3 4 + +
3 * (4 + 5} 345+ *
{3 * 4) + 5 3 4 %5 +

66

The above example would be entered intoc the calculator
pprogram as shown below. The '?' is the prompt, and
atter each number or operator is entered RETURN should
he typed. The program prints out the result after each
uperations

21
L2
i
=3
¢’ 4
rh
i
9

l'*

= 27

Sample run

In the following example using larger numbers the
caleulator works out 10000000001/99009901:

»10000000001
?99009901

4

= 101

A number can be squared, by duplicating it on the
stack with " and then multiplying:

¢111111111111

am
e

= 111111111111

-

= 12345679012320987654321

Finally, we divide the result by the square of 1111ll1:

+111111

= 111111
- 12345654321
= 1000002000001

These results are all exact, and could not of ccurse
iy obtained with a conventional calculator.

rogram Operation

in these programs the long numbers are represented as
strings of ASCITI characters. The arithmetic routines

67

to multiply, divide, and add, take two strings and
generate a result in the form of a third string. This
representation was chosen so that the standard BASIC
string operations could be used to manipulate long
humbers and print them out; other representations
would probably require special routines for these
functions, but might give faster calculation,

BBC Computer Version

5 REM .,. Calculator ...
10 DIM M%240,S5%(10),F%1023

20 S5%=0:55%(S%)=F%: Z%=A8C("0")
30 REPEAT INPUT LINESM%

Look for digit, or one of the following commands:
" -~ duplicate item on stack

* - multiply

+ - add

/S = divide

40 IF?M%>=ASC("0"]AND?M%<=ASC("9")$F%=$M%:
PROCUP : PROCF : UNTILD

45 TFS%>0AND?M3=ASC""""AR=5S5%(5%) :
D%=SS%{S%-1):PROCUP:PROCRESULT:UNTILO

Make sure there are at least 2 ltems on the stack,
and then set up:

D -~ top of stack (for result).

B - first operand on stack
A - second operand on stack

46 IFS5%<2 PRINT™STACK EMPTY":UNTIL 0

48 D%=SS%(S%):B%=SS%(S%—1}:A%=SS%(S%—2}
50 IF?M8=RSC"* "PROCMUL : PROCDONE : UNTILO
55 IF?M$=ASC"+"PROCADD : PROCDONE : UNTILO
58 IF?M$=ASC"/"PROCDIV : PROCDONE : UNTIL(
60 PRINT"ERROR":UNTILQ

PROCDONE - Decrement stack, Ehen drop through to
put result on stack.

90 DEF PROCDONE S$%=8%-1

PROCRESULT - Result is in D. Remove leading zeros;
then copy result down stack, and print resu.it.

92 DEF PROCRESULT

93 D%=D%-1;:REPEATD%=D%+1 : UNTIL?D%<> %% ORD%?1=13
95 SA%=$D%:F%=A%:PROCF

100 PRINT " = "$5S%(5%-1)

110 ENDPROC

68

[PROCF - Make room for result on top of stack.

500 DEF PROCF F%=F%+LEN(F%)+1:55%(5%)~F%:ENDPRCC

PROCMUL - Multiply: $D% = SA% * SB%
First set L% to length of result, and zero $DS%.
Then do long multiplication.

1000 DEF PROCMUL

1005 L%=LEN($A%)+LEN(SB%):FOR N%=0TO L%-1:
D%E?NE=Z% tNEXT : D% ?L%=13

1010 FOR J%=LEN($B%)-1 TO 0 STEP -1l: C%=0:G%=B%?J%-2%

1020 vi=D%+J%+1

1030 FOR L%=LEN{35A%)-1 TO Q STEP -1: H%=A%?L%-Z%

1040 Q%=G%*HY+CE+{VE?LE~Z%)

1050 V$?L%=0Q% MOD 10+Z%:C%=0%/10:NEXP

1060 VE?L%=C3%+3%

1070 HNEXT : ENDPROC

PROCADD - Addition: $D®% = SA% + SB%
Set result to longest operand, and add in other
operand.

2000 DEF PROCADD

2005 We=A%:V$=B%:J%=LEN{ $A%)-LEN(3$B%): IFJ%<0
WE=B%:VE=A%:J%=-J%

2010 S(D¥+1)=8SWR:?DI=Z%:C%=0:We=D3+J%+1

2020 FORLS&=LEN{3V%)-1 TO 0 STEP -1

2030 Q¥=WBZLE+VE?LE—2*3%

2040 W%?L%=0% MOD 10+%%:C%=0%/10

2050 NEXT:W®7L%=W%?L%+(C%:ENDPROC

PROCDIV - Division: $D% = SA% / SB%

Keep subtracting divisor, counting in V%, using C%
as a borrow this time, until overflows (C&%=0);
then add divisor back in once.

4000 DEF PROCDIV

4005 FORJ%=0 TC LEN(3A%)-LEN($B%):Ws=A%+J%:Vi=-1
4010 REPEAT V%=V%+1:C%=]1

4020 FPOR L%=LEN($B%)-1 TO -J% STEP -1
4025 Q%=Z%:IF L%>=0 Q%=B%?L%

4030 QE=WE?L%-Q%+C%+9

4032 W?L%=0% MOD 10+2%:C%=0%/10

4035 NEXT

4040 UNTIL C%=0

4050 FORL%=LEN{S$B%)-1 TO -J% STEP -1
4055 Q%=%%:IF L&%>=0 (%=B%7L%

4060 Q%=WH?LB+Q%—2*Z%2+C%

4065 W?L3=Q% MOD 10+%%:C%=0%/10:NEXT
4070 D%E?J%=VR+ZL:NEXT:D%?2J%=13

69

4080 ENDPROC

[PROCUP = Increment stack]

6000 DEF PROCUP IFS%>10PRINT"STACK FULL" : ENDPROC
6010 S%=5%+1:ENDPROC

Variables:

$A%,3B% ~ Strings containing the two operands used by
the arithmetic routines

C% - Carry/borrow

$D% - String into which result is put

H% - Temporary variable

J%,L% - Loop counters

M%¥ - Input line

Q% - Intermediate result in calculations

5% - Next free stack pointer

55%(0)..88%(10) - Pointers to number strings on stack
V%,W% - Pointers used by arithmetic routines

Z%¥ - Equal to ASC("D™)

Atom Version

5 REM ... CALCUILATOR ...
10 DIM M(64),55{(10),F{-1)
20 §=0;888=F; z=CH"0"

30 DO INPUTSM

Look for digit, or one of the foliowing commands:
" - duplicate item on stack

* - multiply

+ - add

/ - divide

40 IF?M>=CH"0"AND?M(=CH"9"$F=$M: GOSUB u1;G0OSUB
£f;G07T0 x
45 IFS>0AND?M=CH""""A=SSS: D=85(S5-1) :GOSUB u;GOTC w

Make sure there are at least 2 items on the stack,
and then set up:

D - top of stack (for result}.

B - first operand on stack

A - second operand on stack

46 IFS<2 PRINT"STACK EMPTY "' ;GOTO x
48 D=SSS;B=SS{S—1};A=SS[S—2}

50 IF?M=CH"*"GOSUB m;GOTO z

55 IF?M=CH"+"GOSUB a;G0OT0 =z

58 IF?M=CH"/"GOSURB d4;:G0T0 =z

60 PRINT"ERROR"':GOTD x

90z8=5-1

70

copy result down stack, and print renult,

92wD=D-1;DOD=D+1 ; UNTIL?D<>Z ORD?1=13
95 $A=$D;F=A;GOSUR f
100 PRINT * = "3$55{S-1)!"

110xXUNTILG

| £ - Make room for result on top of stack,

500f F=F+LENF +1 ; SSS=F ; RETURN

w - Result is in D. Remove Tecading 2o 0w, | liea

First set L to length of result, and zero $D. Then

[7h - Multiply: $D = $a * $B

de long multiplication.

1000mL=LENA+LENB ; FOR N=0TO L-1; D?N=Z2;NEXT ;D?L=13
1G10 FOR J=LENB-1 TO 0 STEP ~1;C=0;G=B?J-2Z

1020 v=D+J+1

1030 FOR L=LENA-1 TO 0 STEP -1;H=A?L~%

1040 Q=G*H+C+(V?L~32)

1050 V?L=Q3%10+2Z;C=Q/10;NEXT

1060 V?L=C+3Z

1070 NEXT;RETURN

a ~ Addition: 8D = 3A + 5B

Set result to longest operand, and add in other

operand.

2000aW=A ;V=B; J=LENA~LENB ; IFJ<0 W=B;V=a:J=-J
2010 $(D+1)=$W;?D=%;:C=0;W=D+J+1

2020 FORL=LENV-1 TO { STEP -1

2030 Q=W?L+V?L-2*%

2040 W?L=Q%10+Z2;C=0Q/10

2050 NEXT;W?L=W?L+C;RETURN

d - Division: $D = GA / SB

add divisor back in once.

Keep subtracting divisor, counting in Vv, using C
as a borrow this time, until overflows {C=0}): then

40004FCRJ=0 TQ LENA-LENB;W=A+J;V=-1
4010 DO v=v+1;C=1

4020 FOR L=LENB-1 TO -J STEP -1
4025 Q=Z;IF L>=0 Q=B?L

4030 Q=W?L-Q+C+9

4032 W?L=Q%10+%;C=0Q/10

4035 NEXT

4040 UNTIL C=0

4050 FORL=LENB~1 TO ~J STEP -1

4055 Q=Z;IF L>=0 Q=B?L

4060 Q=W?L+(Q~2*Z+C

4065 W?L=Q%10+7;C=0/10 ;NEXT
4070 D?J=V+Z;NEXT;D?J=13
4080 RETURN

| u - Increment stack

6000uIFS>10PRINT"STACK FULL"';RETURN
6010 S=S+1;RETURN

Variables:

$A,$B - Strings containing the two operands used by
the arithmetic routines

C - Carry/borrow

$D - String into which result is put

Temporary variable

- Loop counters

Input line

- Intermediate result in calculations

- Next free stack pointer

55{(0)..88(10} - Pointers to number strings on stack
V,W - Pointers used by arithmetic routines

2 - Equal to CH"Q"

woEgm
-
[|

Further Suggestions

The calculator could be extended to handle negative
numbers, represented by a string starting with a "-"
sign, and subtraction could then be implemented. As a
more ambitious undertaking, the calculator could be
extended to give arbitrary-precision versions of all
the inteqer functions of a standard pocket calculator,
including X"Y, factorials, and probability functions.

A more ambitious extension would make these
routines the basis of an interpreter, which would
allow programs to be written manipulating numbers to
unlimited accuracy.

72

5 Compiler

The final chapter in this beook is devoted to an
ambitious project to write a compiler which will
convert programs written in a high-level language,
similar to Pascal, into the machine code of the Atom
and BBC Computer.

In order to keep the compiler as straightforward
as possible, and to enable it to run in the memory of
the standard Atom or BBC Computer, several
simplifications were made. First of all, the compiler
is limited to 8-bit numbers; i.e. numbers in the range
0 to 255. Secondly, it handles a restricted set of
statements and operators.

The program was primarily developed to illustrate
the problems inveolved in designing a high-level
language compiler, It should also serve as a good
introduction to recursively-defined languages such as
Pascal, and shows the relationship between a statement
in such a language and the corresponding machine-code.
Finally, the compiler will compile into efficient
machine code, and sc could be used to develop
machine-code preograms for applications such as machine
control,

Compilers and Interpreters

The BASIC running on the Atom and BBC computers 1s an
'interpreter'; that is, it executes each statement in
the program as it encounters it. A ‘'compiler', on the
other hand, takes a program in one language and
converts it into machine code - the language of the
processor. The compiled, machine-code wversion of the
program can then be run without further needing the
presence of the compiler program. Also, since they are
running in the language of the computer itself,
compiled programs are likely to run very much faster
than interpreted versions of the same programs.

The compiler to be described is written in BASIC,
and makes use of the mnemonic assembler built into the
Atom and the BBC Computer. The advantage of using the

73

built-in assembler is that an assembler listing is
automatically produced, sc the code generated for a
particular high-level language program 1is
comprehensible and easily checked. However, the
compiler c¢ould be altered to run on other computers by
generating machine code directly; it could also be
used to write programs for microprocessors other than
the 6502,

ASSIGNMENT

As a preliminary step in designing the compiler, a
program is presented that will take a series of
assignment statements such as A=A+2 and assemble them
into &502 machine code. This program, Assignment, will
then form the basis for the complete compiler.

This program cocmpiles in a single pass, reading
the input line and generating assembler statements as
it goes. The following operations, which work on 8-bit
numbers, are handled by the program:

+ : add - : subtract
& : logical AND | : logical OR
>> ;3 right shift << ¢ left shift

A1l these operaters have the same priority, ang
brackets can be used to alter the order of evaluation.
Note that the shift operators must have a constant as
their right-hand operand, as in:

A=B>>2

Variable names can have up to six upper-case letters,
and are automatically assigned to zero-page Remory
locations by the program.

The program uses a stack to hold intermediate
results during compilation. Addresses are represented
by numbers in the range 1 to FFFF (hexadecimal), and
constants as the negative of their value; i.e. by
numbers in the range 0 gto -255. When the compiler
reads an operator it performs the following sequence:

a. pull the location of the previous results from the
stack,

b. assemble code to calculate the new result,
c. push onto the stack the location of the new result.
The intermediate results during the compilation of a

74

complicated expression, such as A= {B+2)&{C+3), are
associated with temporary locations, TT(0), TT(l) etc.

Using this procedure the program would compile the
statement:

MAX=31& (VAR+15)
a5z

LA VAR
CLC

ADC @15
STA TT(0)
LDA @31
AND TT(0)
sra TT(L)
LA TT(1)
STA MAX

The superfluous STA TT(1l) and LDA TT(1) are eliminated
by keeping track of the address whose contents are in
the accumulator at any time. Instead of generating
code to load the accumulator, a call is made to a
subroutine that first checks to make sure that the
accumulator does not already contain the required
value, Furthermore, code is only generated to store
the accumulator's contents when absolutely necessary;
that is, when a new value is to be loaded into the
accumulator.

Sample Run

The following section shows a sample run of the
Assignment program, on the Atom, for various
statements which are typed in after the '?' prompt. In
the listing the first column, which is only present in
the Atom version, shows the line in the compiler
program that generated the assembler code. The next
column gives the address of the machine code, followed
by the one, two, cor three bytes of the instruction,
and the assembler statement. The symbols L, U, and H
in the assembler statements are used by the program,
and take different values at different points in the
program.

>»RUN
?VAR=]

7210 3A00 A9 01 LDa @-L
7200 3A02 B85 51 STA H

The program has allocated location #51 for the
variable VAR.

?VAR=VAR+1

75

7040 3A04 AS 51 LDA L
307G 3a06 18 CLC
3070 3A07 69 01 ADC d@-D
7200 3A09 85 51 STA H

?MAX=31& (VAR+15)

7040 3A0B A5 51 LDA L
3070 3aA0D 18 CLC
3070 3A0E 69 OF ADC g-U
7200 3A10 85 80 STA H
7210 3A12 n9 1F LDA &-L
3065 3Al14 25 80 AND U
7200 3Ale 85 52 5TA H

The program has allocated location #52 for MAX. The
bracketed expression is evaluated first, and stored in
a temporary location #80.

PMIN=(1|VAR)-{MAX>>4)

7200 3AZ24 85 81 5TA
7040 3A26 A5 80 LDA
3055 3A28 318 SEC
3055 3A29 E5 81 SBC U
7200 3A2B 85 53 STA H

Here MIN is allocated loccation #53, and two temporary
locations are used. Note that the right-hand operand
of '>>' or '<<' must be a constan?.

?X=1+(VAR-)

BRACKET MISSING
X=1+(VAR-}

7210 3A18 A% (1 Lba @-L
3060 3Ala 05 51 ORA U
7200 3A1C 85 80 5TA H
7040 3A1E AS 52 LDA L
3180 3a20 4a LSR A
3180 3A2]1 4a LSR &
3180 3A22 4A LSR &
3180 3823 4A LSR A

H

L

Finally, a statement which generated an error.
BBC Computer Version
5 REM ... Assignment ...
10 HIMEM=&2800

20 DIM SS(20),IDS$S(30),J3{(30)
30 DIM TT(20),X%7,2%256:AS=CHRS(6)

76

Important addresses:

MC - Start address for machine code.

VARS ~ Start address for variables and arrays.
TEMPS - 20 temporary locations.

35 MC=&3B00:VARS=&50: TEMPS=&80 : PRARG=5§94: SADD=& 2800
115 FOR N=0TQZ20:TT(N)=0D:NEXT
140 I=0:P=MC:8=0:R=0:B=0:T=0

Cne pass of compilation. Initialise pointers, and
make sure accumulator is stored finally,

200 REPEAT INPUTSZ%:A=2%
210 PROCSTMT : PROCSTA
220 UNTIL FALSE

PROCSTMT - Statement. Skip blanks, then read
symbol .

1GG0 DEF PROCSTMT

1010 PROCSP:PROCSYM

1110 PROCSP

1135 PROCV

1160 PROCRHS :H=V:PROCSTA : ENDPROC

[_PROCRES - Right-hand side of assignment statement. |

1180 DEF PROCRHS

1185 IF 2A<>ASC"=" PRINTAS$"NO =":PROCERR
1190 A=A+1:PROCEXP:L=FNPUL

1195 PROCLDA ;: V=FNPUL : ENDPROC

| PROCIDENT - Read an identifier,]

2000 DEF PROCIDENT
2010 PROCSYM:PROCV :ENDPROC

PROCV - Look up identifier $X% in symbol table. If
symbol does not already exist (N=I) allocate
address for it. Push address to stack.

2020 DEF PROCV

2030 IF N=0 ENDPROC

2040 PROCLOOK

2050 IFN=X:I=I+l:R=R+1:JJ(N)=R+VARS

2070 IFI>30PRINT"TOO MANY VARIABLES":PROCERR
2080 U=JJ(N):PROCPSH{U} :ENDPROC

PROCONST - Read a decimal constant. If not found,
N=0, If found, push minus its value.

2100 DEF PROCONST

2105 PROCSP

2110 N=-1:C=0:REPEAT D=C:N=N+1:C=C*1(
2120 C=C+A?N-ASC"D"

2130 UNTILA?N<ASC"0"ORA?N>ASC"9"

2140 IFN=0 ENDPROC

2150 A=A+N

2160 U=-D:PROCPSH (U) :N=1:ENDPROC

PROCLOOK - Look up S$X% in symbol table, IDS{0],
IDS(1) ... If not found, N=I.

2400 DEF PROCLOOK
2410 IDS$(I)=8X%:N=-1
2420 REPEAT N=N+1:UNTILIDS(N)=ID$(I):ENDPROC

PROCEXP - Assemble code to calculate an_j
expression, of the form:
<factor> <operator> <factor>
where <operator> is one of:

+ : add - 1 subtract
| : or & 1 AND
<< : left shift >> 1 right shift

Then push the address of the result on the stack,

3000 DEF PROCEXP PROCSP:PROCFACT@R

3010 PROCSP

3020 IF?A=ASC"+"QOR?A=ASC"—"GRZA=ASC"&"
OR?A=ASC" ["0=2A:A=A+1:GOTO 3035

3025 IF NOT((?A=ASC">"AND A?1=ASC">")0OR ({ PA=ASC"<"AND
A?1=ASC"<"))ENDPROC

3030 O=PA:A=A+2.

3035 PROCPSH{(Q)

3040 PROCFACTOR:U=FNPUL :0=FNPUL ; L=FNPUL : PROCLDA

3045 IF U<=0 GODTO 3070

3050 IFQ=ASC"+"[CLC:ADC U:]

3055 IFO=ASC"-"[SEC:SBC U:]

3060 IFO=ASC"|"[ORA U:]

3065 IFO=ASC"&"[AND U:]

3068 GOTO 3190

3070 IFO=ASC"+"{CLC:ADC #-0U:]
3075 IFO=ASC"-"[SEC:SBC #-U:
3080 TFO=ASC" |"[ORA #¥-U:]

3085 IFO=ASC"&"[AND #-U:]

3160 IFO=ASC"<"FOR N=1TO-U:[ASL A:] :NEXT
3180 IFO=ASC">"FOR N=1TO-U:[LSR A:]:NEXT
3190 L=U:PROCRELEASE(L) : PROCTEMP

3195 GOTO 301Q

78

by

PROCFACTOR - Factor. Check for symbol, constant,
or bracketed expression. If the symbol is followid

{ or "['" then it is a function or an array

respectively.

3600
3610
3620
3625
3630
3635
3640
3650
3660

DEF PROCFACTOR

PROCSYM : IFN=0GOTC 3630

PROCV

ENDEROC

PROCONST:TF N ENDPROC

IF?A<>ASC" (" PRINTAS"BRACKET MISSING":PROCERR
A=A+]1:PROCEXP : PROCSP

IF?A<>ASC"}" PRINTAS"BRACKET MISSING":PROCERR
A=p+1: ENDPROC

| PROCPSH - Push argument onto stack.

5020
5021

DEF PROCPSH(U) S5(S)=U:5=5+1:IF5<21 ENDPROC
PRINTAS$"STACK FULL":PROCERR

[FNPUL - Pull from stack.

5030
5031

DEF FNPUL:5=5-1:IF5>=0 =885(8)
PRINTAS "STACK ERROR":PROCERR

[PROCSP - Skip blanks.

5040 DEF PROCSP

5042 IF?A=32 REPEAT A=A+1:UNTILZ?A<>32

5049 ENDPROC

PROCTEMP - Generate a temporary lecation TT(N);

return its address in T, set H to the address, and
push the address.

5100
5110

DEF PROCTEMP
N=-1:REPEAT N=N+1: IF N>20PRINTAS"NOT ENOUGH

TEMP " : PROCERR

5120
5130

UNTILTT(N)=0
T=N+TEMPFS : TT{N)=T:U=T:H=T:PROCPSH (U} : ENDPROC

K=0

PROCSYM - Read a symbol into $X% from $A. Returns

if no symbol found.

6000
6010
6020
6030
6040
6050

DEF PRQCSYM

PROCSP:N=-1:REPEAT N=N+l1l: N?X%=A?N
UNTILA?N>ASC"Z"ORA?N<ASC "A"QORN=7
IF N=(ENDPROC

IF N<7 N?X%=&D:A=A+N:ENDPROC
FRINTAS$ "SYMBOL TOO LONG™:PROCERR

T4

PROCLDA - Assemble code to load the accumulator
with L. If accumulator already contains L (L=H)
then do nothing; otherwise store its previous
contents (PROCSTA} and load new contents.

7000 DEF PROCLDA

7010 IFL=H AND L>0 PROCRELEASE(L}:ENDPROC
7020 PROCSTA

7030 IFL<=0 [LDA #-L:]:ENDPROC

7040 [LDA L:]:PROCRELEASE({L)

7050 ENDFPROC

PROCSTA - Assemble code to store accumulator's
contents to location H,

7100 DEF PROCSTA
7200 IFH>O0[STA H:]:H=0

7210 ENDPROC (
PROCRELEAGE - Release temporary variable fot
re-use.

7300 DEF PROCRELEASE(L)
7310 IF L>=TEMPS AND L<TEMPS+20:TT{L-TEMPS}=0
7320 ENDPROC

[PROCERR - Output error,]

9000 DEF PROCERR
3010 PRINT '$Z%

9030 PRINT TAB{A-Z%-1);" ":END
Variables:
A - Pointer to current position in expression being
compiled
C - Used to evaluate constant
H - Address whose contents are currently in
accumulator, H=0 means ignore previpus contents
I - Number of next free symbol
ID${0})..IDS(30) - Pointers to symbol names
JJI{0}..3J{30) - Addresses of symbols
L - Value or address to be loaded into accumulator;

used by PROCLDA

N - Temporary variable

O - Operator read by PROCEXP

P - Program location counter, used by assembler
RR(0)..RR{2} - Constant addresses

R - Number of variable locations used up

5 - Next free location on 55 stack
S5{(0}..585(20) - stack used by compiler

T - Temporary location assigned by PROCTEMP

80

TT(0)..TT{20) - Flags for temporary locations; value=(Q
if location is free for use

U - Value to be pushed by PROCPSH

¥ - Used by FNPUL

X% — String into which symbols and keywords are read
by PROCSYM

4% - Input buffer

Atom Version
10 ... ASSIGNMENT ...

20 DIM 88(20),LL{20),II(30},JJ3{(30)
30 DIM X{7),TT{20),RR(2)

lmportant addresses:

RRO - Start address of machine code.

RR1 - Start address of variables and arrays.
RR2 — 20 temporary locations.

35 RRO=#3A00;RR1=#50;RR2=%#80

40 F.N=0T030;DIMI(6);IIN=I;JJIN=RRO;N.
115 F.N=0TO20;TTN=0;LLN=RRO;N,
140 2=#100;G=0;I=0;P=RRO;S5=0;R=0;H=0;T=0

One pass of compilation. Initialise pointers, and
make sure accumulator is stored finally.

200 DO INPUTSZ;A=Z
210 GOS.s;G05.m
220 UNTIL 0

[s - Statement., Skip blanks, then read symbol.

1000sREM STATEMENT

1010 GOS.b;GOS.x

1110 GOS.b

1135 GOS.]

1160 GOS.d:H=V;G0S5.m;R.

[4 - Right-hand side of assignment statement.

11804IF?A<>CH"=" P.56"NO =";G.0
1190 A=A+1:;G0S.e;G05.v;L=V;G05.1;G05.v;R.

[i - Read an identifier.

2000iREM IDENTIFIER
2010 GOS.x

g1

symbol does not already exist (N=T) allocate
address for it. Push address to stack.

j ~ Look up identifier $X in symbol table. Tf _J

20303IF N=0 R,

2040 GOS.y

2050 IFN=I;I=I+1;R=R+1;JJN=R+RR1

2070 IFI>30P.$6"TO0 MANY VARIABLES";G.o
2080 U=JIN;GOS.u;R.

€ - Read a decimal constant. If not feund, N=0, If
found, push minus its value.

2100cREM CONSTANT (

2105 GOS.b

2110 N=-1;C=0;DG D=C;N=N+1;C=C*1{0
2120 C=C+azN-CH"Q"

2130 U.A?N(CH"U"ORA?N)CH"Q"

2140 IFN=0 R.

2150 A=a+N

2160 U=-D;GOS.u;N=1;R.

— Look up $X in symbol table, SII(0}, $II(1) ...
If not found, N=T.

2400yREM LOOKUP
2410 BITI=SX;N=-1
2420 DO N=N+1;U.$IIN=SIII;R,

¢ - Assemble code to calculate an expression, of
the form:
<factor> <operator> <factor>
where <operator> is cne of:
+ : add - : subtract
: OR & : AND
: left shift >> ; right shift
Then push the address of the result on the stack.

3000eREM EXPRESSION
3010 GOS.b;GOS.f

3015 GOSs.b

3020 IF?A=CH"+"OR?A=CH "~ "OR?A=CH "& "OR
PA=CH" | "0=2A;A=A+1:G.3035

30253 IF{(?A=CH">"A.A?1=CH">")OR
(?PA=CH"<"A,A?1=CH"<")):1 R.

3030 O=?2;A=R+2

3035 U=0;G0S.u

3040 GOS.f;GOS.v;U=V;GOS.V:O=V;GOS.V;L=V;GOS.1
3045 IF U<=0 G.3070

3050 IFO=CH"+"[CLC;ADC U;]

3055 IFO=CH"-"[SEC:SBC U;]

B2

3060 IFO=CH"|"[ORA U;]
3065 IFO=CH"&"[AND U;]

3068 G.3190

3070 IFO=CH"+"[CLC;ADC €-U;]
3075 IFQO=CH"-"[SEC;SBC @-U;]
3080 IFO=CH"|"[ORA €-U;]
3085 IFQ=CH"&"[AND @-U;]

3160 IFO=CH"<"F.N=1TO-U;[ASL A;]:N.

3180 TFO=CH">"F.N=1TO-U;[LSR A;]:N.

3190 L=U;G0S.r;GOS.t

3195 G.3015

f - Factor. Check for symbol, constant, o
bracketed expression. If the symbol is followed by
(' or '"['" then it is a function or an array

respectively.

3600fREM FACTOR

3610 GOS.x;IFN=0G.3630

3620 GOS.j

3625 R,

3630 GOS.c;IF N R.

3635 IF?A<>CH"(" P,$6"BRACKET MISSING";G.0o
3640 A=A+1;G0S.e;G0S.b

3650 IFPA<>CH")"™ P.$6"BRACKET MISSING";G.o
3660 A=A+1;R,

[u - Push U dnto stack.

5020u888=U;8=5+1;IF5<2l R.
5021 P.$6"STACK FULL";G.o

[v~ Pull V from stack. _

5030vS=5-1;IF8>=0V=855; R,
5031 P.$6"STACK ERROR";:;G.o

[b - Skip blanks. |

5040bIF?A=32 DO A=A+1;U.7A<>32
5043 R.

t - Generate a temporary location TIN; return 1Cs
address in T, set H to the address, and push the
address.

5100tREM TEMP., LOC.

5110 N=-1;D0 N=N+l; IF N>20P.$6"NOT ENOUGH TEMP":G.o
5120 U.TTN=0]

5130 T=N+RR2; TTN=T; U=T; H=T; G.u

X

— Read a symbol into 5X from SA. Returns N=0 1if

no symbol found.

6000xREM READ SYMBOL

6010 GOS.b;N=—1;D0 N=N+1; N2k=azn
6020 U.A?N>CH"Z"ORAZN<CH"A"ORN=T7
6030 IF N=0 R.

6040 IF N<7 N?X=#D;A=A+N;R.

6050 F.$6"SYMBOL TOO LONG";G.o

1

— Assemble code to load the accumulater with L.

if accumulator already contains L (L=H) then do
nothing; otherwise store its previous contents
{GOS,m) and lcad new contents.

70001REM LOAD ACCUMULATOR
7010 IFL=H AND L>0 G.r
7020 GOS.m

7030 TFL<=0 [LDA @-L;:];R.
7040 [LDa L;]1;G.r

m

— Assemble code to store accumulator's contents

to location H.

7100mREM STORE ACCUMULATOR
7200 IFH>D(STA H;]:H=0

7210 R.
r - Release temporary variable with address L for
re-~use.

7300rREM RELFASE VARIABLE
7310 IF L>=RR2 AND L<RR3;TT(L~-RR2)=0
7320 R.

[0 - Output error.

90000REM ERROR
9020 p.'$z’
9030 F.N=Z TOA-2;P."™ ";N.;P."""";E.

Variables:

A - Pointer to current position in expression being
compiled

C - Used to evaluate constant

H - Address whose contents are currently in
accumulator. H=0 means ignore previous contents

I - Number of next free symbol

II{0)..II{30) - Pointers to symbol names

JJI(0)..JJ(30} - Addresses of symbols

L
84

Value or address to be loaded into accumulator;

used by subroutine 1

N - Temporary variable

O - Operator read by subroutine e

F - Program location counter, used by assembler
RR(0)..RR(2) -~ Constant addresses

R - Number of variable locations used up

S - Next free location on S5 stack

S5(0)..85(20) - Stack used by compiler

T - Temporary locatien assigned by subroutine t
TT(0)..TT(20) - Flags for temporary locations; value=0
if location is free for use

U - Value to be pushed by subroutine u

V - Value to be pulled by subroutine v

X - String into which symbeols and keywords are read by
subroutine x

Z - Input buffer

SPL

The next step in developing the complete compiler is
to define the language that it will compile. The
language designed for this purpose is called SPL -
Simple Programming Language. In some respects it is a
subset of the popular languages Pascal and Algol, but
with the restriction that numbers are limited to the
range 0 to 255, and that the language includes only
the essential types of statement.

Syntax of SPL

Programs in SPL are written as lines of text; the line
numbers have no significance, except when editing.
spaces must be used to separate words, and must not
occur within words, but otherwise they are ignored and
can be added to make the structure of programs
clearer,

Symbols

All variable names, array names, procedure names, and
labels, can consist of up to six letters, all of which
dre significant. None of the language words may be
used as symbols. Cn the BBC Computer all symbols and
language words are in lower case; however, on the
itom, and in the following examples, upper case is
used.

85

Comments

Any text between brackets '{' and '}' is ignored by
the compiler, nd can be inserted, to comment SPL
programs, anywhere spaces are permitted.

Frograms

Programs normally consist of a procedure such as the
following:

PROC MAIN(};
BEGIN
stmt;
stmt;

stmt
END

where 'stmt' represents any of the statements
described below. The statements in the bkody of the
procedure between BEGIN and END are separated by
semi-colens.

SPL Statements
SPL contains the following statements:

Array Declaration

Arrays are declared with the ARRAY statement. For
example:

ARRAY MAX[3],B[2]
reserves space for arrays with elements:

MAX[0], MAXi1l], MAX[2], MAX[3], and
BI0], B[1], and B[2].

These array elements can then be used is the same way
as simple variables. Arrays can have up to 255
elements, aund there is no checking that arrays are
within bounds.

Procedure Declaration

aAny number of procedures, with ohe parameter, can be
declared. For example:

PROC ADD(X)}; statement
and the procedure is called by:
ADD(expression)

The parameter is a local parameter; i.e. the use of X
in the procedure ADD above does not affect the value
of X outside the procedure. Thus, in the following
example:

86

PROC INC(X); X=X+1
ENTER: WRHEX{X); INC(X); WRHEX(X}

the two calls to WRHEX, which print the value of X,
both print the same value.

The single parameter is optional:; thus a procedure can
be defined:

PROC INC(); J=J+1

which alters the wvalue of J outside the procedure,.
Note that a procedure cannot be declared inside
another procedure which has a parameter.

Function Declaration

&4 function is identical to a procedure, except that
its last statement is a RETURN statement specifying
the result to be returned. For example:

PROC BDDONE(N); RETURN N+l

defines a function ADDONE whose wvalue is one greater
than its argument. Thus:

WRHEX({2+ADDONE(3})
would print '06',

Assignment
The assignment statement is of the form:
variable = expression

where the variable is an identifier or an array
element. For example:

TIME=TIME+1
SYMBOL [RDCH{)]=A-3
Operators

Expressions can use any ©of the following operations,
which work on 8-bit numbers:

+ : add - : subtract
& : logical AND | + logical OR
»>> ;3 right shift << ¢ left shift

A1l these operators have the same priority, and
brackets can be used tc alter the order of evaluation.
The shift operators shift the left-hand operand the
number of places specified by the right-hand operand,
which must be a constant as in:

A=B>>3 fequivalent to A=B/8}
A=RB<<4 {equivalent to A=B*1&)

87

GErrer 5t ol e it
Any slateyent can be prefixed by a label:
LOOE ; A=Agl

A jump can be made to the labelled statement by means
of the GOTO statement, as in:

GOTO LOOP

IF Statements
The IF statement has the form:
IF condition THEN statement

in which the statement is only executed if the
condition is true. There may also be an ELSE clause:

IF condition THEN statement ELSE statement

in which case the second statement will only be
executed if the condition is false. Note that if one
of the statements is itself an IF...THEN...ELSE
statement the ELSE statement associates with the
nearest IF condition. For example:

IF A=1 THEN
IF A>0 THEN WRHEX{1l)
ELSE WRHEX({2)

will, if A=2, write nothing.

Conditions
The condition in an IF statement is of the form:
eXpression comparison expression

where the comparison is one of:

> : greater than <= : less than ¢or equal
< : less than >= : greater than or equal
= : edqual <> : not equal

BEGIN...END Block

Any number of statements can be grouped together
within a BEGIN...END block, which has the format:

BEGIN
statement;
statement;
statement

END

The entire block then has the same status as a single
statement, Note that the semi-colons are used as

88

statement separators, not as statement terminators,
and so there is no need for a semi-colon before the
END statement.

Pre-~defined Symbols

The following symbols are defined in both versions of
the compiler:

Symbol Operation Example
RDCH Function to read a character B=RDCH({ }-48
WRCH Procedure to write a character WRCH{32)
SCREEN Array of 256 screen locations SCREEN[0]=0C

In addition, in the Atom version, the feollowing
symbols are defined:

Symbel Operation Example
WRHEX Procedure to print in hex WRHEX{255)
PORT Array of I/0 ports PORT[2]=4

SPL Syntax Diagrams

A more formal definition of the syntax of a language
like SPL can be given using 'bead' diagrams as shown
below. The diagrams can be used to work cut whether a
given program is legal in terms of the language. Each
censtruct, such as ‘expr:', is defined by travelling
along the line te its right, following the arrows.
Constructs imn sguare brackets, such as [stmt], are
defined by referring to another diagram. Constructs in
round brackets, such as (ARRAY) or (:), refer to
keywords or symbols in the language. The language is
defined recursively, so certain constructs, such as
'stmt:', contain references to themselves.

89

N
program:

stmt:

expr

90

{stmt] >

——H{ident}—(:i]
<

—{ ARRAY)—Cfent}—([fconstant F—~1
{,}
—-{PROC)——{ident)T({ }-—(})——r(;}-—{stmt]-—-——>
{0) (1}
[ident]

- variable }<{=>-{expr} >

—{ GOTO y~={ ident)} >

-—{ IF }{ cond }—-{ THEN - stmt]j—>

[—(ELSE}{stmt pb—>

— RETURN }—{ expr }— >

o BEGIN ts::mt;j(END }— >
H

— factor k= + factor} y >
h—(—
(|
— &
f—{ >> }—{ constant
“{ << }=] constant]—J

factor: —~—[constant] >
—{ ident

M function

~—array

“—{ (F{expr }~{)

constanty ———{0 to 255} >

ident: ——{up to 6 letters}) >

variable: ——Eident} >
ident M [YHexpr]

cond: m————o{ exXpr F—{ <> b—pl expr >
—(<=
M—{>=+
M < 1
>
(=

SPL PROGRAMS

The following demonstration programs can all be
compiled into machine-code by the Compiler program to
be described, and run on the Atom or BBC Computer.
They illustrate some of the features of SPL.

Bubble Sort

The first program performs a bubble sort of the
characters in the top half of the screen memory. The
sort works by successively comparing pairs of adjacent
locations; if two are in the wrong order they are
cxchanged, and then the smaller one is moved back to
its correct position in the locations that have
already been sorted.

5 {BUBBLE SORT OF SCREEN}
10 PROC BUBBLE();

91

15 BEGIN I=0;
20 LOQP:J=I;
25 LOCPA:IF SCREEN]{J}>SCREEN[J+1] THEN

28 BEGIN

30 TEMP=SCREEN[J] ;

31 SCREEN[J]=SCREEN[J+1]:

32 SCREEN[J+1] =TEMP ;

35 IF J=0 THEN GOTO OK;

40 J=J-1;:GOTC LOOPA

42 END;

45 OK:I=I+1;IF I<255 THEN GOTO LOOP
60 END

When the compiled program is executed the characters
on the top part of the screen will be sorted inteo
order,

Crawling Snake

The following SPL program moves a Snake across the top
half of the screen, and demonstrates the use of the
language's shift operators '>>' and "<<'. The program
is only suitable for the Atom, and uses a routine WAIT
to make sure that the screen accesses are noise-free.
After being compiled it should be executed by linking
to the address corresponding to the label ENTER.

5 {CRAWLING SNAKE)
10 PROC SNARE(};:
15 BEGIN
20 PROC CLEAR{K};
25 {CLEAR SCREEN TQ CHARACTER K}

28 BEGIN
30 X=0;CLR : SCREEN[X]=K;

35 X=X+1;IF X<>0 THEN GOTO CLR
40 END;

42 PROC WAIT();
43 {WAIT FOR FLYBACK SYNC}

44 BEGIN
45 WA:IF PORT[2]>127 THEN GOTO WA
46 END;

47 ENTER:L=0;CLEAR{64);

48 SCREEN([0D)=127;SCREEN[1]=127;

43 SCREEN(2]=127;SCREEN[3]=127;

50 RUN:X=0;

60 LOOP:WAIT();

70 C=(SCREEN[X]&63)<<2;

80 SCREEN[X]=C|192+L;:L=C>>6;

90 X=X+1;

95 IF X<>0 THEN GOTO LOQP ELSE GOTO RUN
100 END

92

Write Hexadecimal

The following procedure will print a number as two
hexadecimal numbers on the screen. Cn the Atom this
routine is pre-defined,

40 proc wrhex(n);

50 begin

60 if n>=160 then wrch(n>>4+55)
70 else wrchi{n>>4+48);

80 n=nk&l5;

90 if n>=10 then n=n+7;
100 wrch(n+48)

110 end;

When compiled and executed the procedure will print
the contents of the accumulator in hexadecimal.

Prime Numbers

The following SPL program finds all the prime numbers
up to 127, and prints them in hexadecimal:

10 PROC MAIN();

20 BEGIN

30 PROC PRIME(N);

35 {PRINT N IF PRIME}
40 BEGIN D=1;

60 TRY ;:D=D+1; E=N;

65 IF D<N-1 THEN

68 BEGIN

70 TEST :E=E-D;

75 IF E<>0 THEN

80 IF E<128 THEN GOTQ TEST
85 ELSE GOTO TRY

88 END

90 ELSE WRHEX(N)
110 END;

115 {MAIN PROGRAM}

120 ENTER:T=1;

125 ALL:PRIME(T);WRCH(32};
130 IF T<128 THEN

140 BEGIN

150 T=T+1;:GOTO ALL
170 END
190 END

On the BBC Computer the definition of the 'wrhex'
routine should be inserted at the start of the program
between lines 20 and 30. The compiled program, when
executed, prints the following sequence:

93

61 02 03 05 07 08 0D i1 13 17 1D 1r
25 29 2B 2F 35 3B 3D 43

47 49 4F 53 59 61 65 67 6B

6D 71 iF

It prints a space for every number tested, so the
primes can be seen to become more sparse as they get
larger.

Greatest Common Divisor

The following function finds the greatest commen
divisor (GCD) of the numbers A and B using Euclid's
algorithm:

5 PROC TEST(); BEGIN

10 PROC GCD(); {GCD OF A,B IN B}
20 BEGIN LOOP:IF A<>B THEN

25 BEGIN

30 IF A<B THEN B=B-A

35 ELSE A=A-B END;

40 RETURN B END;

45 ENTER:A=9; B=12; WRHEX(GCD())
50 END

The routine, once compiled, should be entered at
ENTER, when the GCD of 9 and 12, i.e. 3, will be
displayed. Again, for the BBC Computer version the
'wrhex' routine should be included since it is not
pre-~defined.

Multiply Routine

The following test program demonstrates an 8-bit
multiply routine written in SPL:

5 PROC TEST(};

8 BEGIN

10 PROC MULT(};
15 {a*B - RESULT IN C}
20 BEGIN C=0;

25 MULL:IF B>0 THEN

28 BEGIN

30 IF B&l=1 THEN C=C+a;

40 A=A<<1;B=B>>1;GOTO MULL
45 END

50 END;

8 ENTER:A=6;B=19;MULT() ;WRHEX(C)
60 END

The machine code is executed from the address
corresponding tec the label ENTER, and should print out

94

'72'; in other words, 6*19=11l4, or 72 in hexadecimal.

Mastermind

In the following SPL Mastermind program the computer
generates a random 4-digit code, which the player must
guess. The guess is entered as four decimal digits,
and the computer displays the result as two digits:
the first digit gives the number of digits correctly
guessed in the correct position; the second digit
gives the number of correct digits incorrectly placed.
When the computer's code is correctly guessed, with a
score of '40', the program gives a 'bleep'.

The following sample run shows each of the
player's 4-digit guesses followed by the computer’'s
2-digit reply:

1122 0¢
3344 10
5566 00
7788 20
9900 10
3780 02
7948 40

The version of the program shown below is for the BBC
Computer; on the Atom all the symbols and wvariables
should be in upper case, and lines 40 to 110 can be
omitted.

10 {mastermind}
20 proc mastr();
30 begin array myl3],your[3],temp[3];
40 proc wrhex(n);
50 begin
60 if n>=160 then wrch{n>>4+55)
70 else wrch(n>>4+48};
80 n=n&ls5;
90 if n>=10 then n=n+7;
100 wrch(n+48)
110 end;
120 proc rnd();
130 begin rndy:rndx=rndx<<2+rndx+7;
140 if rndx&l5>9 then goto rndy;
150 return rndx&ls
160 end:;
170 proc inputf();
180 begin n=0;
190 readc:j=rdch{);wrch(j);j=i-48;
200 if 3>9 then goto readc:
210 your[nl=j;n=n+l;
220 if n<4 then goto readc

95

230 end;

240 {main program}

250 enter:n=0;

260 myno:my[n]=rnd{);n=n+1;

270 if n<4 then gote myno;

280 try:input();n=0;

290 copy:temp[nl=my![n];n=n+l;
300 if n<4 then goto copy:

310 n=0;score=0;

320 bull:if templ[ni=your[n) then
330 begin temp{n]=10;your{nl=11;

340 score=score+lé

350 end;

360 n=n+l;if n<4 then goto bull;
370 n=0;

380 cow:m=0;

390 cowx:if temp[n])=your(m] then
400 begin temp[n]=10;your[m]=11:
410 score=score+l

420 end;

430 m=m+1;if m<4 then goto cowx:
440 n=n+1:if n<4 then goto cow;
450 wrch{32};wrhex(seore):wrch(lﬁ);wrch(lB):
460 if score<>64 then goto try;
470 wrch{7}

480 end

COMPILER {

The last program in this book is the complete compiler
which will take a program written in SPL and convert
it into machine code for the 6502.

The cempiler program, and the SPL program to be
compiled, are first entered into different parts of
memory. On running the compiler the machine-code will
be generated, and put into memory where it can be
eXecuted. As given below the two versions of the
compiler use the following menory areas:

Use: BBC Computer: Atom:

Compiler program &EQ0-&27FF #8200-$9800
SPL program &2800-&3700 #2900-#39FF
Machine code &3800-&3BFF #3A00-43BFF

The procedure for using the compiler is as follows:
On the BBC Computer first type:

PAGE=52800

96

NEW

and enter the SPL program as you would a BASIC
program. Since the symbols are in lower case there is
no danger of them being converted into tokens by
BASIC,. Having done this, type:

PAGE=&E00
NEW

and either type in, or load from tape, the Compiler
program. Then type:

RUN

The compiler performs twc identical passes so that the
assembler will resolve forward references. The first
pass is performed with the screen turned off; then the
ressage:

PRINT?

is given to allow CTRL-B to be typed to turn on the
printer for a listing. Typing RETURN will then give
the assembler listing statement by statement. After
the second pass a symbol table will be printed,
showing the addresses corresponding to all the symbols
used by the program., Finally, to execute the
machine-code generated by the compiler type:

CALL &3800

where &3800 is the start of the machine cede. Some of
the programs should be entered not at the start of the
machine code, but at the address corresponding to the
label ‘'enter'; this address can be found from the
symbol table.

On the Atom the corresponding segquence is as
follows. First type:

218=#29
NEW

and enter the SPL program. Then type:

?18=4#82
NEW

and load the compiler. RUN as above, and then to
execute the machine code type:

LINK #3A00

or the address corresponding to the label 'ENTER', if
present.

Sample Run

The following run shows the assembler listing produced
by the Atom version of the Compiler for the Bubble

97

Sort program given above:

{BUBBLE SORT OF SCREEN}
PROC BUBBLE() ;
BEGIN I=0;

7210 3ACD A9 00 LDA €-L
7200 3A02 85 51 STA H

LOOP:J=1;

7040 3A04 AS 51 LDA L
7200 3A06 85 52 STA H

LOOPA : IF SCREEN[J]>SCREEN[J+1] THEN

7040 3A08 A5 52 LDA L
3685 3A0A AA TAX

3685 3A0B BD 00 80 LDA V,X
7200 3A0E 85 81 STA H
7040 3A10 AS 52 LDA L
3070 3Al12 18 CLC
3070 3a13 69 01 ADC @-U
3685 3A15 AA TAX
3685 3Al6e BD 00 80 LDA V,X
7200 3A19 85 82 STA H
7040 3Al1B A5 81 LDA L
7320 3RA1D C5 82 CMP M

4231 3AlF FG 02 BEQ P+4
4201 3A21 BO 03 BCS P+5
4201 3A23 4C 60 3& JMP LLG

BEGIN
TEMP=SCREEN{J];

7040 3A26 A5 52 LDA L
3685 3A28 AR TAX
3685 3a42% BD 00 80 LDA V,X
7200 3A2C 85 53 STa H

SCREEN[J]=SCREEN[J+1];
7040 3A2E A5 52 LDA L

3070 3A30 18 CLC
3070 3A31 69 01 ADC @-u
3685 3A33 AA TAX

3685 3A34 BD 00 80 LDA V,X
1330 3A37 A6 52 LDX L
1330 3A39 9D QD 80 ST V,X

SCREEN[J+1]=TEMP;

7040 3A3C Bn5 52 LDA L
3070 3A3E 18 CLC
3070 3A3F 69 01 ADC @-U
7200 3a4l 85 81 STA H
7040 3A43 A5 53 LDA T,
1330 3a45 A6 81 DX L

98

1330 3A47 9D 00 80 STA V,X
IF J=0 THEN GOTO OK;

7040 3A4A A5 52 LDA L
4110 3A4C C9 00 CMP &-M
4202 3A4E FO 03 BEQ P+5
4202 3A50 4C 56 3A JMP LLG
2270 3A53 4C 60 3A JMP U
1445 3A56 :LLV

J=J-1:GOT0C LOOFA

7040 3A56 A5 52 LDA L

3075 3A58 38 SEC

3075 3A5% E9 01 SBC &-U

7200 3A5B 83 52 STA H

2270 3A5D 4C 08 3A JMP U
END;

1445 3A60 :LLV

OK:I=I+1;IF I<255 THEN GOTO LOOP

7040 3R60 A5 51 LDA L
3070 3A62 18 CLC

3070 3A63 69 01 ADC @
7200 3A65 85 51 STA H
7040 3R67 AS 51 LDA L
4110 3A6% C9 FF CMP @-M
4204 3R6B 90 03 BCC P+5
4204 3A6D 4C 73 3A JMP LLG
2270 3A70 4C 04 3A JMP U

END
1445 3A73 :LLV
6040 3A73 60 RTS
SYMEOCLS:
FFE6 RDCH
FFF4 WRCH

F802 WRHEX
8000 SCREEN

B(GGO0 PORT

300 BUBBLE
51 1

3a04 LOOFP
52 J

3408 LOOPA
53 TEMP

3460 CK

BBC Computer Version

5 REM ... Compiler ...

Lo NIMEM=52800
20 DIM 85(20),LAB(20),ID$(30),J7(30)
30 DIM TT{20),X%7:A$=CHRS(6)

Important addresses:

MC - Start address for machine code.

VARS - Start address for variables and arrays.
TEMPS - 20 temporary locations.

PRARG - Location for use by procedures for
argument.

SADD_- Source program address.

35 MC=&3800:VARS=&50:TEMPS=&80:PRARG=&94:SADD=&2800

Pre-defined symbols:

rdch() Function reads a character.
wrceh(X) Procedure writes character X in ASCIT.
screenfd] ... screen255] Array to access screen,

40 ID$({0)="rdch":JJ(0)=&FFE(
50 IDS(l}="wrch":JJ{l]=&FFEE
60 ID$(2)="screen":JJ(2)=67C00
70 FOR N=0T0Q2Z20: TTN=0: NEXT

disabled, and second pass with screen enabled.

Now do compilation; first pass with screen
Finally print symbol tahle.

200 PRINT CHRS$(21):PROCOMPILE

220 PRINTAS'"PRINT";:INPUTBS: PROCOMPILE

225 PRINT '"SYMBQLS:"

230 FORN=0TOI-1:PRINT JJ(N)," ", IDS (N} :NEXT
240 END

PROCOMPILE - One pass of compilation. Initialise
pointers, with I=3 since there are 3 pre-defined
symbols. Then compile statement, and make sure
accumulator is stored finally.

900 DEF PROCOMPILE:G=U:A=SADD:I=3:P%=MC
910 S=0:R=0:H=0:T=0D
920 PROCSTMT : PROCSTA : ENDPROC

PROCSTMT - Statement. Skip blanks, read symbol,
then check for keywords. Ignore 'end' if found.

1000 DEF PROCSTMT

1010 PROCSP:PROCSYM

1020 IFX="if"GOTO1400

1030 IFX="begin"GOTO1200
1040 IF$X%="goto"GOTO1500
1045 IF$X%="end"A=A-3:ENDPROC

100

1050 IFSX%="proc"GOTO1700
1060 IF$X%="array"GOTOL800
1070 IF$X%="return"GOTO13900

If the symbol is not a keyword then it must be a
label, an assignment statement, or a procedure
call,

1100 REM IDENT STATEMENT

1110 PROCSP

1120 IF?A=ASC":"A=A+1:PROCVAR:JJ(N)=P%:PROCSTMT:
ENDPROC

1130 IF?A=ASC"{"PROCVAR:PROCPSH({U) :PROCBODY : ENDPROC

1135 PROCV:IF?A=ASC("[") GOTO 1300

1160 PROCRHS :H=V:PROCSTA : ENDPROC

[PROCRHS - Right-hand side of assignment statement.

1180 DEF PROCRHS

1185 IF 7?A<>ASC"=" PRINTAS$"NO =":PROCERR
1190 A=A+1:PROCEXP:L=FNPUL

1195 PROCLDA :V=FNPUL: ENDEFROC

["begin' - Deal with 'begin' ... 'end' block.

1200 REM BEGIN...END

1210 A=A-1: REPEAT A=A+l

1220 PROCSTMT:PROCSP

1230 UNTIL 2A<>ASC";"

1240 PROCSYM:IFS$X%="end"ENDPROC
1250 PRINT"NO END":PROCERR

Array element on the left-hand-side of an
assignment statement.

1300 REM ARRAY=

1310 A=A+1:PROCEXP:IF?A<>ASC"]"PRINTAS"NO]|";PROCERR
1320 A=A+1:PRQCRHS;L=V;V=FNPUL

1325 IFL<=0[LDX @~L:STA V,X:]:H=0:ENDPROC

1330 [LDX L:STA V,X:]:H=0:;ENDPROC

"ift ~ Assemble code to evaluate condition, ana
following 'then' assemble code to execute a
statement. Pull label from stack and assemble
label. Deal with 'else' clause.

1400 REM IF...THEN...ELSE

1410 PROCLOGICAL:PROCSP

1420 PROCSYM:IF$X%="then"GOTO1430
1425 PRINTAS"NO then:PROCERR
1430 PROCSTMT :V=FNPUL :FROCGP

1440 PROCSYM:;IFSX%="else"GOTC1l460

101

1445 A=A-N:[.LAB({V):]|:ENDPROC

1460 G=FNLAB:U=G:PROCPSH(U}:[{JMP LAB(G):]
1470 [.LAB{V):}:PROCSTMT

1490 V=FNPUL:[.LAB(V):]:ENDPROC

['goto' - Get label and assemble jump to it.

1500 REM GOTO
1510 PROCLABEL:[JMP U;]
1520 ENDPROC

'proc' - Get name and set its value to entry
address P. Then get dummy parameter.

1700 REM PROC

1710 PROCLABEL:JJ(N)=P%:IF?A<>ASC"{"PRINTAS "MISSING
BRACKET " : PROCERR

1720 A=A+1:JJ(1)=1:PROCIDENT ; IFN=0GOTC1780

1730 U=N:PROCESH({U)

17490 T=PRARG:H=T:JJ(U)=T:PROCSTA

1745 IF?A<>ASC"}"PRINTAS"NO BRACKET":PROCERR

1750 A=A+1:PRCCSP:IF?A<>ASC"; "PRINTAS"NO ;":PROCERR

1760 A=A+1:PROCSTMT

1770 V=FNPUL:N=V;V=FNPUL:JJ{N)=V:{RTS:] : ENOCPROC

[Come here if procedure has nc parameter.

1780 IF?A<>ASC™)"PRINTAS"NO BRACKET":PROCERR
1782 A=A+1:PROCSP:IF?A<>ASC"; "PRINTAS$"NO ;":PROCERR
1785 A=A+]1:PROCSTMT:[RTS:]:ENDPROC

‘array' - Look up array name; assign space from
VARS onwards. Allow multiple declarations,
separated by commas.

180G REM ARRAY

1810 A=A-1: REPEAT A=A+l

1820 PROCSP:PROCSYM:PROCLOOK

1830 IFN<>I PRINTAS$"ARRAY DECLARED":PROCERR

1840 IF?A<>ASC"["PRINTAS"BRACKET MISSING":PROCERR

1850 A=A+1:PROCONST:IFN=0PRINTAS "CONSTANT
MISSING": PROCERR

186G V=FNPUL:JJ(I}=VARS+R:I=I+1:R=R-V+1

1870 IF?A<>ASC"]"PRINTAS"BRACKET MISSING";:PROCERR

1880 A=A+1:PROCSP:UNTIL?A<>ASC", ":ENDPROC

‘return' - Assemble code to load accumulator with
expression,

1930 REM RETURN
1910 PROCEXP:V=FNPUL ;L=V:PROCLDA ;: H=0 : ENDPROC

102

[PROCIDENT - Read an identifier.

2000 DEF PROCIDENT
2010 PROCSYM:PROCV:ENDPROC

symbol does not already exist (N=I) allocate
address for it. Push address to stack.

PROCY - Look up identifier $X in symbol table. If i

2020 DEF PROCV

2030 IF N=0 ENDPROC

2040 PROCLOOK

2050 IFN=I:I=I+1:R=R+1:JJ(N}=R+VARS

2070 IFI>I0PRINT"TOO MANY VARIABLES":PROCERR
2080 U=JJ(N):PROCPSH(U) :ENDPROC

PROCONST - Read a decimal constant. 1f not found,
N=0. If found, push minus its value.

2100 DEF PROCONST

2105 PROCSP

2110 N=-1:C=0:REPEAT D= :N=N+1:0=C*10
2120 C=C+A?N-ASC"0O"

2130 UNTILAZ?N<ASC"O"ORA?N>ASC"9"

2140 IFN=0 ENDPROC

2150 A=A+N

2160 U=-D:PROCPSH(U}:N=1:ENDFROC

["PROCLABEL - Read label.

2200 DEF PROCLABEL

2210 PROCSP:PROCSYM

2220 IF N=0 PRINT"LABEL MISSING":PROCERR
2225 PROCVAR:ENDPROC

PROCVAR - Look up label in symbol table. If not
found (N=I) put it in. Return its address in U.

2230 DEF PROCVAR:PROCLOOK

2250 IFN=I:I=I+1

2260 IFI>30PRINTASPTOC MANY VARIABLES":FROCERR
2270 U=JJ{(N) :ENDEROC

PROCLOCK - Look up SX% in symbol table, ID$(0},
ID$(1l) ... If not found, N=I.

2400 DEF PROCLOQK
2410 IDS(I)=8X%:N=-1
2420 REPEAT N=N+1:UNTILID${N)=ID$(1):ENDPROC

103

PROCEXP - Assemhle code to calculate an
expression, of the form:
<factor> <operator> <factor>
where <operator> is one of:
+ : add - : subtract
: OR & : AND
: left shift >> @ right shift
Then push the address of the result on the stack.

3000 DEF PROCEXP PROCSP :PROCFACTOR

3010 PROCSP

3020 IF?A=ASC"+"OR?A=ASC"-"OR?A=ASC"g"
OR?A=ASC" ["0=?A :A=A+1:GOTC 3035

3025 IF NOT((?A=ASC">"AND A?1=ASC">")OR (PA=ASC"<"AND
A?1=ASC"<"))ENDPROC

3030 O=?A:A=A+2

3035 PROCPSH(O)

3040 PROCFACTOR ; U=FNPUL : 0=FNPUL : L,=FNPUL : PROCLDA

3045 IF U<=0 GOTO 307D

3050 IFO=ASC"+"[CLC:ADC

3055 IFO=ASC"~"[SEC:SEC

3060 IFO=ASC"|"[CRA U;:]

3065 IFO=ASC"&"[AND U:]

3068 GOTO 3190

3070 IFO=ASC"+"[CLC:ADC #

3075 IFO=ASC"-"[SEC:SBC #-

3080 IFO=ASC"|"[ORA #-U:]

3085 IFO=ASC"&"[AND #-U:]

3160 IFO=ASC"<"FOR N=1T0-U:[ASL A:] :NEXT

3180 IFO=ASC">"FOR N=1TO-U:[LSR A;:] :NEXT

3190 L=U:PROCRELEASE{L)}:PROCTEMP

3195 GOTO 3010

PROCBODY - Procedure body. Check for) '. If there
is a parameter first assemble code to calculate
parameter, load it into the accumulator, and then
JSR. Assume subroutine alters accumulator, so set
H=0.

3200 DEF PROCBODY

3210 IFA?1=ASC")"A=A+2:G0TO3230
3220 PROCFACTOCR :V=FNPUL :L=V: PROCLDA
3230 V=FNPUL:[JSR V:]:H=0:ENDPROC

PROCFACTCR - Factor. Check for symbol, constant,
or bracketed expression. If the symbol is followed
by '(' or '[' them it is a function or an array
element respectively.

3600 DEF PROCFACTOR
3610 PROCSYM:TFN=0GOTO3630

104

3615
3620
3625
3630
3635
3640
3650
3660

IFZA=ASC"{ "GOTO3650
PROCV:IF?A=ASC"["GOTO3670
ENDPROC

PROCONST:IF N ENDPROC

IF?A<>ASC"{" PRINTAS"BRACKET MISSING":PROCERR

A=A+];PROCEXP ;: PROCSP

IF?A<>ASC")" PRINTAS"BRACKET MISSING":PROCERR

A=A+]1:ENDPROC

Evaluate array element. Assemble code to evaluate
array index and load it into the accumulator; then
TAX and load indexed by the base address.

3670 REM ARRAYS

3675 A=A+1:PROCEXP:IF?A<>ASC"]"PRINTAS"NO
BRACKET " : PROCERR

3680 A=A+1:L=FNPUL:PROCLDA ;: V=FNPUL

3685 [TAX:LDA V,X:]:PROCTEMP : ENDFROC

[Call function here.

3690 PROCVAR:PROCPSH(U) : PROCBODY ; PROCTEMP ; ENDPROC

PROCLOGICAL - Logical expression. Laok for:
{expression> <comparison> <expression>

4000 DEF PROCLOGICAL
4010 PROCSP:PROCEXP:PROCSE

Expect a compariscn here; look for '<', '>°',

and set value of 0 depending on segquence:

and

> 1 =3 2
>= ¢ 3 < : 4
<> 3 5 <= 1:16
Then use a ¢omputed GOTC to assemble code for each
case.,
4020 U=0
4030 IFZA=ASC"<"A=RA+1:U=4
4040 IF?A=ASCY>"A=A+1:U=0+1
4050 IF?A=ASC"="A=A+]1:U=U+2
4060 IFU=0 OR U>6 PRINT"ILLEGAL TEST":PROCERR
4070 PROCPSH(U) : PROCEXP
4080 M=FNPUL:U=FNPUL
4090 L=FNPUL:PROCLDA
4100 IFM>0[CMP M:]
4110 IFM<=0 [CMP #-M:]

105

First generate & label LAB(G). Then assemble cods
tor the comparison. Note that if the condition is
true we branch around a jump to LAB(G), Push value
of LAB(G) for use by IF...THEN statement.

4120 PROCRELEASE(M):G=FNLAB:GOT0(4200+U)
4201 {BEQ P%+4:BCS P%+5:]:60T04210

4202 [BEQ P%+5:]1:G0T04210

4203 [BCS P%+5:]:G0T0O4210

4204 [BCC P'+5:]:G0T04210

4205 [BNE P2+5:] :GOT04210

4206 [BCC P%+7:BEQ P%$+5: 1:6G0T04210

4210 [Jmp LAB(G):]

4220 U=G:PROCPSH(U):H=0:ENDPROC

[_PROCPSH ~ Push argument ontc stack. f

5020 DEF PROCPSH(U):SS(S)=U:S=S+1:IFS<21 ENDEROC
3021 PRINTAS"STACK FULL": PROCERR

[FNPUL — puil from stack, B

5030 DEF FNPUL:8=5-1: IFS>=(=38(8)
3031 PRINTAS "STACK ERROR" : PROCERR

PROCSP - Bkip blanks, 1ine numbers, and comments
between '{' ang '},

5040 DEF PROCSP

5042 IF?A=32 REPEAT A=A+1;UNTIL?A<>32

5046 IF?A=13A=A+4:PRINT $A :GOTO5042

5048 IF?A=ASC"{“REPEATA=A+1:UNTIL?A=ASC"}":
A=A+1:GOTO5042

5049 ENPPROC

FNLAB - Return a new label number. Label is
LAB(G).

5070 DEF FNLAB:G=G+1:IF G<20 =G
3071 PRINTAS"TQ0 MANY LABELS *: PROCERR

location TT(N}; return itsg address in T, get H to

PROCTEMP - Return the address of 3 temporary
the address, ang push the address.

3100 DEF PROCTEMP

5110 N=-1:REPEAT N=N+1: IF N>20PRINTAS "NOT ENOUGH
TEMP" : PROCERR

5120 UNTILTT(N)=0

5130 T=N+TEMPS:TT(N)=T:U=T:H=T:PROCPSH[U}:ENDPROC

1086

PROCSYM - Read a symbel into $X% from SA. Returns
N=0 if no symbol found.

6000 DEF PROCSYM

6010 PROCSP:N=-1:REPEAT N=N+1l: NPX$=A?N
6020 UNTILA?N>ASC"z"ORAPN<ASC"a"ORN=7
€030 IF N=0 ENDPROC

6040 IF N<7 N?X%=&D:A=A+N:ENDPROC

6050 PRINTA$"SYMBOL TOO LONG™:PROCERR

PROCLDA - Assemble code to load the accumuiator
with L. If accumulator already contains L {L=hn)
then do nothing; otherwise store its previous
contents and load new contents.

7000 DEF PROCLDA
7010 IFL=H AND L>0 PROCRELEASE({L):ENDPROC
7020 PROCSTA

7030 IFL<=0 [LDA #-L:]:ENDPROC

7040 [LDA L:]:PROCRELEASE(L)

7050 ENDPROC

PROCSTA - Assemble code to store accumulator's
contents to location H.

7100 DEF PROCSTA
7200 IFH>Q[STA H:]:H=0
7210 ENDPROC

PROCRELEASE - Release specified temporary variable
for re-use.

7300 DEF PROCRELEASE(L)
7310 IF L>=TEMPS AND L<TEMPS+20: TT(L-TEMPS)=0
7320 ENDPROC

PROCERR - Qutput errocr. Print line containing
error and '"' pointing to approximate position.

9000 DEF PROCERR
9010 N=A:X=0:REPEAT N=N-1:X=X+1:UNTIL?N=13:@%=5
9020 PRINT'N?L1*256+N?2,S$(N+4)

9030 PRINT TAB(X+2);"“":END

Variables:

A - Peinter te current position in expression being
compiled

C - Used to evaluate constant

G - Number of next free label LAB(G)

H - Address whose contents are currently in
accumulator. H=0 means ignore previous contents

I - Number of next free symbol

ID${0),.ID$(30}) - Symbol names

JI(0)..JJ(30) - Addresses of symbols

L. - Value or address to be loaded into accumulator;
usaed by PROCLDA

LAB{0)..LAB(20) - Labels for use in assembly

MC ~ Assemble machine code to here

N - Temporary variable

0 - Operator read by PROCEXP

P - Pregram location counter, used by assembler

PRARG - Location for use by procedures for argument

R ~ Number of variable locations used up

5 - Next free location on 85 stack

SADD - Source program address

SS(0)..585(20) - Stack used by compiler

T - Temporary location assigned by PROCTEMP

TEMPS - 20 temporary locations start here
TT(0)..TT(20} - Flags for temporary locations; value=0
if location is free for use

U - Value pushed by PROCESH

V - Used by FNPUL

VARS - Allocate variables and arrays starting here

X% - String into which symbols and keywords are read
by PROCSYM

Atom Version

To save program space in this version of the compiler
abbreviated forms of many of the BASIC statements and
commands have been used, and for convenience these are
listed below:

Abbreviation: Keyword:
A AND
E. END
F. FOR
G. GOTO
GOS. GOSUB
N. NEXT
P. PRINT
R. RETURN
U. UNTIL

10 REM ... COMPILER ...
20 DIM SS(20),LL{20),II(30),JJ(30)
30 DIM X(7),TT(20),RR{4}

lo8

Important addresses:

RRO - Start of machine code.

RR1 Start of variables and arrays.

RR2 - 20 tempcrary locations.

RR3 - Location for use by procedures for argument.
RR4 - Source program address.

35 RRO=#3A00;RR1=#50;RR2=#80;RR3=494;RR4=#2900
40 F,N=0TO30;DIMI{6);IIN=I;JIN=RRO;N,

Pre-defined symbols:

RDCH() Function reads a character.

WRCH (X} Procedure writes character X,

WRHEX({X} Procedure writes X as two hex digits.
SCREEN[O0] ... SCREEN[255] Array to access screen,
PORT[Q0] ... PORT[3] Array to access I/0 ports.

50 $II0G="RDCH";JJO=4FFE3;$II1="WRCH";JJ1=#FFF4
60 $II2="WRHEX";JJ2=#F802;$II3="SCREEN";JJ3=#8000
70 $114="PORT";JJ4=#B000

115 F.N=0TOZ20; TTN=0;LLN=RRO;N.

Now do compilation; first pass with screen
disabled, and second pass with screen enabled.
Finally print symbol table.

210 P.$21;G0S5.a
220 P.S6'""PRINT";IN.5100;:G0S.a
228 p,'"SYMBOLS: "'

230 F.N=0TOI-1;P.&JJIN," ",$IIN';N.
240 E.
a — One pass of compilation. Initialise pointers,

with I=5 since there are 5 pre-defined symbols.
Then compile statement, and make sure accumulator
is stored finally.

900aG=0;A=RR4;I=5;P=RR0
910 8=0;R=0;H=0;T=0
920 GOS.s;GOS.m;R.

s - Statement. Skip blanks, read symbol, then
check for keywords. Ignore END if found.

1000sREM STATEMENT

1010 GOS.b;GOS.x

1020 IFSX="IF"G.1400
1030 IFS$X="BEGIN"G.1l200
1040 IFSX="GOTO0"G.1500
1045 IFS$X="END"A=A-3;R.
1050 IF$X="PROC"G.1700

100G

1060 IFSX="ARRAY"G.1l80Q0
1070 IFS$X="RETURN"G.1900

If the symbol is not a keyword then it must be a
label, an assignment statement, or a procedure
call,

1100 REM IDENT STATEMENT

1110 GOS.b

1120 IF?A=CH":"A=A+1;G05.h;JJIN=P;C.s
1130 IF?A=CH"("GOS.h;G0OS.u;G.p

1135 GOS.j;IF?A=CH"["G.1300

1160 GOS.d;H=V;GOS.m;R.

[d - Right~hand side of assignment statement.

11804d1IF?A<>CH"=" P.$6"NO =";G.o
1190 A=A+1;G08.e;608.v;L=V:G0S5.1:G05.v;R.

| BEGIN - Deal with BEGIN ... END block.

1200 REM BEGIN...END
1210 A=A-1;D0O A=A+1
1220 GOS.s;G0S.b

1230 U. ZA<>CH";"

1240 GOS8.x; IF$X="END"R.
1250 P.$S6"NO END":G.o

Array element on the left-hand side of an
assignment statement.

1300 REM ARRAY=

1310 A=A+1;G0S.e;IF?A<>CH"]"P.$6"NO]1";G.0
1320 A=A+1;G08.4;L=V;G05.v

1325 IFL<=0[LDX €-L;8TA V,X;];H=0:R.

1330 [LDX L;8Ta V,X;];H=0;R.

IF - Assemble code to evaluate condition, and
following THEN assemble code to execute a
statement. Pull label from stack and assemble
label, Deal with ELSE clause.

1400 REM IF...THEN...ELSE

1410 GOS.q;G0S.b

1420 GOS.x;IFSX="THEN"G.1430
1425 P.$6"NO THEN";G.o

1430 G0S.5;G05.v;:GOS.b

1440 GOS.x;IFSX="ELSE"G.1460
1445 A=A-N;{:LLV;];R.

1460 GDS.g;U=G;G0S5.u;[IMF LLG;]
1470 {(:LLV;]);c08.s

1490 GOSs.v;[:LLV;];R.

110

[GoOTO - Get label and assemble jump to it.

1500 REM GOTO
1510 GOS.k:[JMP U;];R.

PROC - Get name and set its value to entry address
P. Then get dummy parameter.

1700 REM PROC

1710 GOS.k;JJIN=p;IF?A<>CH"("P.$6"MISSING BRACKET";G.o
1720 A=A+1;J3II=1;G0OS.i;IFN=0G.1780

1730 U=N;GOS.u

1740 T=RR3;H=T;JJU=T;GOS .m

1745 IF?A<>CH")"P,$6"NO BRACKET";G.o

1750 A=A+1;GOS.b;IF?A<>CH";"P.$6"NO ; ";G.0

1760 A=A+1;G0S.s

1770 GOS.v;N=V;G0S.v;JIN=V; [RTS;]:R.

| Come here if procedure has ng parameter.

1780 IF?A<>CH")"P.$6"NO BRACKET":G.o
1782 A=A+1:G0OS.b;IF?A<>CH";"P.$6"NO ;";G.0o
1785 A=A+1:G0S.s;[RTS;];R.

onwards. Allow multiple declarations, separated by

ARRAY - Look up array name; assign space from RR1
COMM&S .

1800 REM ARRAY

1810 A=A-1:DO A=A+]1

1820 G0S.b;GOS.xX;G08.y

1830 IFN<>I P.S6"ARRAY DECLABRED";G.c

1840 IF?A<>CH"["P.S6"BRACKET MISSING";G.o

1850 A=A+1;G0S.c;IFN=0P.$6"CONSTANT MISSING";G.C
1860 GOS,v;JJI=RR1+R;I=I+1;R=R-V+1

1870 IF?A<>CH"]"P.$6"BRACKET MISSING";G.o

1880 A=A+1;GOS.b;UNTIL?A<>CH",";R.

RETURN - Assemble code to locad accumulator with
expression.

1900 REM RETURN
1910 GOS.e;GOS.v;L=V;G05.1;H=0;R.

[1 - Read an identifier.

2000iREM IDENTIFIER
2010 GOS.x

111

symbol does not already exist (N=I}
address for it. Push address to stack.

j - Look up identifier $X In symbol table. If

allocate

20303IF N=0 R.

2040 GOS.vy

2050 IFN=I;I=I+1;R=R+1;JJIN=R+RR1

2070 IFI>30P.$6"TOO MANY VARIABLES";G.o
2080 U=JJIN:;GOS5.u:R.

¢ ~- Read a decimal constant. If not found
found, push minus its value.

; N=0. If

210G¢cREM CONSTANT

2105 GOS.b

2110 N=-1;C=0;DO D=C;N=N+1:C=C*10
2120 C=C+AZN-CH"0O"

2130 U.AZN<CH"Q"QORA?N>CH"9"

2140 IFN=0 R.

2150 A=A+N

2160 U=-D;GOS.u;N=1;R.

[k — Read label.

2200kREM LABELS
2210 G0S.b;G05.x
2220 IF N=0 P.$6"LABEL MISSING";G.o

(N=T) put it in. Return its address in U,

h - Look up label in symbol table. If not found

2230hGOS.y
2250 IFN=I;I=I+1

2260 IFI>30P.$6"TOQ MANY VARIABLES";G.o
2270 U=JJN;R.

If not found, N=I.

¥y — Lock up $X in symbol table, S$II(0), SII{1) ...

2400yREM LOCKUP
2410 SITI=8X;N=-1
2420 DO N=N+1;U.S$IIN=$III;R.

112

e - hssemble code to calculate an expression, of
the form:
<factor> <operator> <factor>
where <operator> is one of:
+ : add - : subtract
| + OR & : AND
<< : left shift >>» : right shift
Then push the address of the result on the stack.

3000eREM EXPRESSION

3010 GOS.b:GOS.f

3015 GOS.b

3020 IF?A=CH"+"OR?A=CH"-"OR?A=CH"&" OR?A=CH"|"C=?A;
A=A+1:;G.3035

3025 IF({?A=CH">"A.A?1l=CH">")OR ({(?A=CH"<{"A.
A?1=CH"<")):1 R.

3030 O=?A;A=A+2

3035 U=0;G0S.u

1040 GOS.f:G0S.v;U=V;G05.v;0=V;G0S.v;L=V;G0S8.1

3045 IF U<=0 G.3070

3050 IFO=CE"+"[CLC;ADC U:]

3055 IFQO=CH"-"[SEC;S8C U:]

3060 IFO=CH"|"[ORA U;)

3065 IFO=CH"&"[AND U;]

3068 G.3190

3070 IFO=CH"+"[CLC;ADC &-U;]

3075 IFO=CH"~"[SEC;SBC @-Uj;]

3080 IFO=CH"|"{ORA @-U;]

3085 IFO=CH"&"[AND &-U;]

3160 IFQO=CH"<"F.N=1TO-U;[ASL A;}]:N.

3180 IFQ=CH">"F.N=1TO-U;[LSR A;];N.

3190 L=U;G08.r;:GOS.t

3195 ¢.3015

p - Procedure body. Check for ')'. If there is a
parameter first assemble code to calculate
parameter, load it into the accumulateor, and then
JSR. Assume subroutine alters accumulater, so set
H=0,

3200pREM PROC BODY

3210 IFA?L1=CH")"A=A+2;G.3230
3220 GOS.f;G0S5.v;L=V;G08.1
3230 GOS.v;[JSR V;]:H=0;R.

f - Factor. Check for symbol, constant, or
bracketed expressicn. . If the symbol is followed
by '{' or '[' then it is a function or an array
element respectively.

3600fREM FACTOR

113

3610 GOS.x;IFN=0G.3630

3615 IF?A=CH"("G.3690

3620 GOS.j;IF?A=CH"["G.3670

3625 R,

3630 GOS.c;IF N R.

3635 IF?A<>CH"{" P.S6"BRACKET MISSING";G.0o
3640 A=RA+1;G0S5.e;G0S.b

3650 IF?A<>CH")" P.$6"BRACKET MISSING";G.0
3660 A=A+I;R.

Evaluate array element. Assemble code to evaluate
array index and load it inte the accumulator; then
TAX and load indexed by the base address.

3670 REM ARRAYS

3675 R=A+1;GO8.e;IFPA<>CHE"]"P.56 " "NO BRACKET";G.o
3680 A=A+1;GOS.v;L=V;G08.1;G0S.v

3685 [TAX;LDA V,X;):6.t

"Call function hera.

3690 GOS.h;G0S.u;G08,.p:G.t

q - Logical expression. Loock for:
<expression> <comparison> <expression>

4000gREM LOGICAL
4010 GOS.b;G0S.e;G0S.b

Expect a comparison here; look for <, "»', and
'=' and set value of U depending on sequence:

> 1 = : 2
>= : 3 < 1 4
<* : 5 =16
Then use a computed GOTC to assemble code for each
case.
4020 U=Q

4030 IF7A=CH"<"A=n+];U=4

4040 IF?A=CH">"A=A+1;U=U+1

4050 IF?A=CH"="A=A+];U=U+2

4060 IFU=0 OR U>6 P.$6"ILLEGAL TEST";G.o
4070 GOS.u;G08.e

4080 GOS.v;M=V;G0S5.v;U=V

4090 GOS.v;L=V;G0s.1

4100 IFM>Q[CMP M; |

4110 IFM<=Q[CMP &-M;]

| 4

First generate a label LLG. Then assemble code for
the comparison. Note that if the condition is true
we branch around a jump to LLG. Push value of LLG
for use by IF...THEN statement.

4120 L=M:GOS.r;G0S.g;G.{4200+U)
4201 [BEQ P+4;BCS P+5;1:G.z
4202 [BEQ P+5;1;G.z

4203 [BCS5 P+5;]1:G.z2

4204 [BCC P+5;1:G.z

4205 [BNE P+5;]1:G.z2

4206 [BCC P+7;BEQ P+5;];G.z2
4210z JMP LLG;]

4220 U=G;G0S.u;H=0;R.

o ~ Push U onto stack.

5020u8S8=U;5=5+1;IFS<2l R.
5021 P,$6"STACK FULL";G.o

v — pull V from stack. 1

5030v5§=5-1; IFS$>=0V=855; R.
5031 P.$6"STACK ERROR";G.o

b - Skip blanks, line numbers, and comments
between '{' and '}°'.

5040bIF?A=32 DO A=A+1;U.?A<>32

5041 IF?A=13A=A+3;P.SA';G.b

042 IF?A=CH"{"DOA=A+1;U.?A=CH"}";A=A+1;G.b
5043 R.

g ~ Generate a new Tabel number in G. Label is
LLG.

5070gG=G+1;IF G<20 R.
5072 P.$6"TOO MANY LABELS";G.0

t - Generate a temporary locaticn TTN; return its
address in T, set H to the address, and push the
address.

5100tREM TEMP. LOC.

5110 N=-1;DO N=N+l; IF N>20P.$6 "NOT ENQUGH TEMP";G.o
5120 U.TTN=0D

5130 T=N+RRZ:; TTN=T; U=T; H=T; G.u

% — Read a symbol into $X from $A. Returns N=0 if
no symbol found.

115

6000XREM READ SYMBOL

6010 GOS.b;N=-1:D0 N=N+1; N?X=A?N
6020 U.APN>CH”Z"ORA?PN<CH"A "ORN=7
6030 IF N=0Q R.

6040 IF N<7 N?X=#D;A=A+N;R.

6050 P.S6"SYMBOL TOC LONG":G.o

1 - Assemble code To load the accumulator with L.
If accumulator already contains L (L=H) then do
nothing; ctherwise store its previous contents
{GOS.m) and load new contents.

70001REM LOAD ACCUMULATOR
7010 IFL=H AND L>0 G.r
7020 GOS.m

7030 IFL<=0 [LDA ¢-L;]:R.
7040 [LDA L;|:G.r

m ~ Assemble code to store accumulator's contents
to location H.

7100mREM STORE ACCUMULATOR
7200 IFH>Q[STA H;]:H=0

7210 R.
r - Release temporary variable with address L for
re-use.

/300rREM RELEASE VARIABLE
7310 TF L>=RR2 AND L<RR3;TT{L-RR2)}=0
7320 R.

© - Dutput error. Print line containing error and
'"' pointing to approximate position.

J000oREM ERROR

010 N=A;X=0;D0 N=N-1;X=X+1:U.?N=13;@=5
1020 P.'N?1*256+N?2,5N+3"

1030 F.N=0TOX+1;P." ":N.;p," " ';E.

iriables:

- Pointer to current position in expression being
mpiled

- Used to evaluate constant

= Number of next free label LLG

-~ Address whose contents are currently in
cumulator. H=0 means ignore previous contents

- Number of next free symbol
{0)..TI(30) - Pointers to symbol names
(0)..J3{30) - Addresses of symbols

— Value or address to be loaded into accumiulator;
ed by subroutine 1

;)

LL(0)..LL(20) - Labels for use in assembly

N - Temporary variable

0 - Operator read by subroutine e

P - Program location counter, used by assembler
RR{0)..RR(2) — Constant addresses

R - Number of variable locations used up

& — Next free lecation on 85 stack

SS(0)..85(20) -~ Stack used by compiler

T - Temporary location assigned by subroutine t
TT(0)..TT(20) ~ Flags for temporary locations; value=0{}
if location is free for use

U - Value to be pushed by subroutine u

Vv - Value pulled by subroutine v

X - String into which symbols and keywords are read by
subroutine x

Further Suggestions

The compiler could usefully be extended in two
directions. Firstly, the definition of SPL could be
enlarged to include some or all of the REPEAT. . .UNTIL,
WHILE...DO, FOR...DO, and CASE statements of Pascal,
AND and OR connectives in the IF statement, and
multi-parameter procedures. Secondly, the compiler
could be enlarged to deal with other data types, such
as character strings and two-byte integers. Multi-byte
operations, including multiply and divide, could then
be implemented by compiling calls to routines which
would be included in the machine code generated by the
compller.

Alternatively, the compiler could be extended into
a speci¢l-purpese language, for applications such as
machine control, by adding extra statements for
reading and setting bits on thke computer's input and
output ports, and for setting up interrupt-service
routines.

The compiler can alsc be modified to generate
machine code for other processors, such as the 6809.
To do this, each assembler statement in the compiler
should be replaced by an equivalent BASIC statement
that will store the relevant machine code into memory.
For example, line 3050 in the BBC Computer version of
the Compiler program:

3050 IFQ=ASC"+"[CLC:ADC U:]
would be altered to:

3050 IFQ=BSC"+": »P%=&B9: P%?1=U/256: P%?2=U AND &FF:
PE=P%+3
where &B% is the code for the 'ADC A' instruction on
the 6809. The Compiler program could thus be used for
developing seoftware on other processors without the

117

1eed for an assembler.

Bibliography

veaders interested in further infermation con some of
-he programs in this wolume may find the following
list of references useful:

5ilver Dollar Game

*on Numbers and Games,” by J. H. Conway, P- 123,
pncademic Press, 1976.

surface

npntomic Theory and Practice," by David Johnson-Davies,
p. 166, Acorn Computer Ltd., 1979.

Anagrams

vceneration of Permutations in Lexicographical order,"
Shen, M. K., Alg 202, CACM, 6:9, p. 517, 1963.

Polynomials

*Seminumerical Algorithms, The Art of Computer
Programming, Vel. 2," by D. Xnuth, p. 360 £f., Addison
Wesley, 1969.

Compiler

wan Introducticn to Compiler Writing," by J. 5. Rohl .,
Macdonald & Jane's, 1975.

*algorithms in Snobol 4," James F. Gimpel, Ch. 18,
John Wiley and Sons, 1976.

General

"The BBC Microcomputer User Guide, " by John Cell, BBC
publications, 1981.

119

A message from the publisher

Sigma Technical Press is a rapidly expanding British publisher. We
work closely in conjunction with John Wiley & Sons Ltd. who provide
excellent marketing and distribution facilities.

Would you like to join the winning team that published this and the
other highly successful books listed on the back cover? Specifically,
could you write a book that would be of interest to the new, mass

computer market?

Qur most successful books are linked to particular computers, and we
intend to pursue this policy. We see an immense market for books
relating to such machines as:

The BBC Computer

PET

Apple

Tandy

Sinclair

Oshorne

Atari

IBM

Sirius . . . and many others

If you think you can write a book around one of these or any other
popular computer — or on more general themes — we would like to
hear from you.

Please write to: Graham Beech,
Sigma Technical Press,
5 Alton Road,
Wilmslow,
Cheshire, SK9 5DY,
United Kingdom.

Or, telephone 0625-531035.

Errata List

to ‘Practical Programs for the BBC
Computer and Acorn Atom’

M

Some minor errors have been detected inthe
program listings, as follows:
p. 9 Line 25— delete P=R!

p. 30 To run the ‘Surface’ program on the BBC

computer Model A, type:
PAGE = &900

before entering the prograrm.

p. 37 Line 240 — change ‘DO’ to REPEAT
Line 410 — PRINT MID$ (A3, CC%(K),1);

p.100 Remove line 70.

p.101 Line 1310 — ‘; should be
Line 1325 — ‘@’should be {F

If you have any suggestions regarding the programs
in this book, please contact the publisher.

About This Book

The BBC Computer is a powerful and versatile machine that has been developed as
part of the BBC computer literacy project. It has numerous hardware options and a
range of high quality graphic modes. These features, together with an extended,
structured BASIC make it a very attractive machine for home, business or school use.

The programs in this book illustrate many of the features of the BBC Computer and
its close relative, the Acorn Atom. They include games, language manipulation,
mathematics, and sophisticated graphics. An example of the latter was used for

the cover design of this book. Users of this book are encouraged to understand how
the programs work, so each program is explained in great detail.

The programs are listed in both BBC Computer and Acorn Atom formats; users of
other computers will be able to adapt most of them quite easily.

David Johnson-Davies is Managing Director of Acornsoft Ltd, a firm dedicated to
Acorn applications software. Davir is one of the original designers of the Acorn Atom
and is the author of the book “Atomic Theory and Practice”.

Sigma Technical Press,
5 Alton Road, Wilmslow,
Cheshire SK9 5DY UK ISBN: 0905104 145

